簡易檢索 / 詳目顯示

研究生: 葉智化
Chih-Hua Yeh
論文名稱: 優化LANDMARC的定位演算法
Enhance LANDMARC from The Fundamentals
指導教授: 蘇順豐
Shun-Feng Su
口試委員: 王偉彥
none
陳建中
none
莊鎮嘉
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 80
中文關鍵詞: LANDMARC無線射頻辨識捨近求遠加權調整距離定位
外文關鍵詞: LANDMARC, RFID, forsake nearest reader, normalized, distance base
相關次數: 點閱:134下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • GPS (Global Position System) 是目前非常普遍的一種定位技術,其相關的應用也不斷的在增加。可惜的是由於衛星訊號容易受到建築物的遮蔽而失去訊號,所以GPS比較適合使用於室外,在室內的定位上比較不合適。因此近幾年發展出了不少的室內定位技術,其中又以LANDMARC這個系統最為受到注意,也是本論文研究的重點。
    LANDMARC是一套以無線射頻辨識 (RFID,Radio Frequency IDentification)為基礎的定位系統。在我們實作LANDMARC的過程中,有發現一些不尋常的大誤差出現在傳統的LANDMARC上。因此在本文中我們提出了兩個主要的處理方法。第一個方法是捨近求遠法後加權調整,以減少因為距離和接收訊號強度之間的非線性關係,所產生的一些影響。第二種方法是一種有別以往的處理方式,在此我們稱之為距離定位型LANDMARC,而傳統的LANDMARC稱之為強度定位型LANDMARC。這兩種方法均能夠明顯的提升定位的精準度,其中距離定位型LANDMARC的效能又比捨近求遠法後加權調整的方法更加卓越。
    在論文最後我們用密度的觀念模擬比較各種拓撲的形式和不同的k之間的關係;試著找出最好的效能組合。從我們的各種模擬中,所得到的結論是方形的拓樸和k=4可以達到最好的整體效能。


    GPS (Global Position System) is a very popular location technology, but because the satellite signals may easily be obscured by buildings, GPS is not suitable for use in indoor location. The LANDMARC system is radio frequency identification (RFID) based location system and has attracted great attention recently. In our implementation of the LANDMARC system, we have observed that some unusual large errors occur in the traditional LANDMARC. Thus, in this study, we proposed ways of resolving these problems. There are two major ideas proposed in this study. The first one is to forsake the nearest reader with normalized weights to reduce the effects of nonlinear relationship between the tag distance and the received signal strength difference. The second one is to use another completely different calculation algorithm. This new approach is based on the distance where the traditional one is based on power. These two new methods can indeed improve accuracy apparently. It can be found that the distance based approach can have better performance than that of using forsaking the nearest reader with normalized weights. Finally, with dense points considered in the simulation, different topologies and various k values are tested to see which topology and which k value can have the best performance. From our simulation, it is concluded that the square topology and k=4 can achieve the best performance overall.

    摘要 I Abstract II Contents III List of Figures IV List of Tables VI Chapter 1 Introduction 1 Chapter 2 Introduction of Wireless Indoor Location Systems 3 2.1 Location Aware Methods 3 2.2 Wireless Indoor Location Sensing Mechanisms 9 Chapter 3 Introduction of RFID 13 3.1 RFID Framework 13 3.2 Characteristics of RFID 16 3.3 RFID Applications 17 Chapter 4 Analysis of Traditional LANDMARC 20 4.1 Formulas of LANDMARC 21 4.2 LANDMARC Simulation Environment 23 4.3 Simulation Results and Analysis 25 Charter 5 Enhanced LANDMARC 32 5.1 Normalized Weight 32 5.2 Forsaking Nearest Reader 35 5.3 Forsaking Nearest Neighbor with Normalized Weights 41 5.4 Distance Based LANDMARC 44 Chapter 6 Study on Topology and the Number of Nearest Neighbors 48 6.1 Overall Region (16 x 16 meters) 50 6.2 Restricted region (12 x 12 meters) 56 6.3 Restricted region (8 x 8 meters) 62 Chapter 7 Conclusions 68 7.1 Summary 68 7.2 Future Work 69 References 70

    [1] E. D. Kaplan, “Understanding GPS: Principles and Applications,” Artech House, 1996.
    [2] J. Pike, “GPS III Operational Control Segment (OCX),” Globalsecurity.org, 2011. http://www.globalsecurity.org/space/systems/gps_3-ocx.htm.
    [3] A. Hatami and K. Pahlavan, “Performance comparison of RSS and TOA Indoor geolocation based on UWB measurement of channel characteristics,” Proceedings of the IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, pp.1-6, 2006.
    [4] L. Cong and W. Zhuang, “Hybrid TDOA/AOA mobile user location for wideband CDMA cellular systems,” IEEE Transactions on Wireless Communications, vol.1, no.3, pp.439-447, 2002.
    [5] T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas and Propagation Magazine, vol.45, no.3, pp.51-82, 2003.
    [6] T. S. Rappaport and S. Sandhu, “Radio-wave propagation for emerging wireless personal-communication systems,” IEEE Antennas and Propagation Magazine, vol.36, no.5, pp.14-24, 1994.
    [7] R. Want, A. Hopper, V. Falcao and J. Gibbons, “The active badge location system,” ACM Transactions on Information Systems, vol.10, no.1, pp.91-102, 1992.
    [8] Term explanation from website, “Time of flight,” En.wikipedia.org, 2011. http://en.wikipedia.org/wiki/Time-of-flight,
    [9] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The cricket location-support system,” In Proceedings of the 6th annual international conference on Mobile computing and networking, pp.32-43, 2000.
    [10] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The anatomy of a context-aware application,” In Proceedings of the 5th annual international conference on Mobile computing and networking, pp. 59-68, 1999.
    [11] P. Bahl and V. N. Padmanabhan, “RADAR: an in-building RF-based user location and tracking system,” Proceedings of Nineteenth Annual Joint Conference on the IEEE Computer and Communications Societies, vol.2, pp.775-784, 2000.
    [12] R. Want, “An introduction to RFID technology,” Pervasive Computing, IEEE, vol.5, no.1, pp.25-33, 2006.
    [13] K. Finkenzeller, “RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification 2nd Edition,” John Wiley & Sons, Ltd., 2003.
    [14] J. Hightower, C. Vakili, C. Borriello and R. Want, “Design and calibration of the SpotON ad-hoc location sensing system,” University of Washington, Department of Computer Science and Engineering, 2001.
    [15] L. M. Ni, Y. Liu, Y. C. Lau and A. P. Patil, “LANDMARC: Indoor location sensing using active RFID,” Proceedings of the First IEEE International Conference Pervasive Computing and Communications, pp.407-415, 2003.
    [16] Y. Huang, S, Lv, Z. Liu, J. Wang, and S. Jun, “The topology analysis of reference tags of RFID indoor location system,” 3rd IEEE International Conference on Digital Ecosystems and Technologies, 2009. DEST '09., pp.313-317, 2009.
    [17] K. Han and S. H. Cho, "Advanced LANDMARC with adaptive k-nearest algorithm for RFID location system," 2010 2nd IEEE International Conference on Network Infrastructure and Digital Content, pp.595-598, 2010.
    [18] Y. Liu, and Gong-jian Yang, “Indoor location algorithm on RFID and its improvement," 2011 3rd International Conference on Computer Research and Development (ICCRD), vol.2, pp.56-59, 2011.
    [19] Y. Xie, J. Kuang, Z. Wang, and S. Zheng, "Indoor location technology and its applications base on improved LANDMARC algorithm," 2011 Chinese Control and Decision Conference (CCDC), pp.2453-2458, 2011.
    [20] Y. Xie, Z. Wang, and S. Zheng, "On RFID positioning base on LANDMARC and improved algorithm," 2010 29th Chinese Control Conference (CCC), pp. 4831-4836, 2010.
    [21] 郭子健, LANDMARC室內定位之研究, 臺灣科技大學, 電機工程研究所,碩士論文, 2009.
    [22] 沈子貴, 以可程式系統晶片發展平台實現無線網路室內定位之分析與應用, 成功大學, 電機工程學系, 碩士論文, 2005.
    [23] 楊智超, 一個以RFID 為基礎的定位機制, 交通大學, 資訊管理研究所, 碩士論文, 2006.
    [24] 簡宗瑋, 適用於無線射頻辨識系統之室內定位演算法, 台灣海洋大學, 電機工程學系, 碩士論文, 2006.
    [25] 馬奕葳, 車載網路之RFID定位系統, 東華大學, 資訊工程學系, 碩士論文, 2008.
    [26] 郭大毅, 在無障礙環境下利用多細胞訊號交叉之無線區域網路定位法研究, 中正大學, 電機工程研究所, 碩士論文, 2005.
    [27] 吳世賢, 支援RFID 定位之3D 虛擬導覽系統, 真理大學, 數理科學研究所, 碩士論文, 2008.
    [28] 張家銓, 無線射頻系統標籤晶片設計, 中華大學, 電機工程研究所, 碩士論文, 2004.

    QR CODE