簡易檢索 / 詳目顯示

研究生: 周啟達
Chi-Ta Chou
論文名稱: 以紫質及酞花青敏化之二氧化鈦染料敏化太陽能電池研究
Studies on Dye-Sensitized TiO2 Solar Cell based on Porphyrin and Phthalocyanine
指導教授: 劉進興
Chin-Hsin Liu
口試委員: 江志強
Jyh-Chiang Jiang
戴龑
Yian Tai
何國川
Kuo-Chuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 119
中文關鍵詞: 染料敏化太陽能電池二氧化鈦交流阻抗光電化學紫質酞花青
外文關鍵詞: Dye-Sensitized Solar Cell, TiO2, Electrochemical impedance spectroscopy, Photoelectrochemical, Porphyrin, Phthalocyanine
相關次數: 點閱:545下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以Sol-gel method製備TiO2薄膜電極,以含不同中間金屬以及外緣取代基的Porphyrin及Phthalocyanine(Pc)製作染料敏化太陽能電池,以探討染料對於能量轉換效率的影響,並利用UV/vis、action spectrum、及交流阻抗法分析其影響。
    在染料篩選部份,我們發現具有-COOH之染料之轉換效率較高,其中以含兩個-COOH取代基的染料較四個-COOH取代基的染料好;不管是Porphyrin還是Phthalocyanine,中間金屬效應都以Zn最佳。
    在TiO2厚度的影響方面,N-3 dye染料敏化太陽能電池之效率於TiO2厚度達9μm以上時呈現定值,Pp-IX敏化太陽能電池之效率則在6μm時達最大值,ZnP-IX敏化太陽能電池之效率約至4~5μm以上呈現定值。
    N-3 dye於TiO2薄膜厚度為10μm時,光電轉換效率為4%;Pp-IX於 TiO2薄膜厚度為6μm時,效率為1.28%; ZnP-IX於TiO2薄膜厚度為9μm時,效率為1.7%。
    以交流阻抗分析染料敏化太陽能電池發現,各染料於其TiO2最適厚度下,R2值均最小,與光電轉換效率結果相吻合;另外此結果亦顯示,R2不僅僅與TiO2之厚度有關,也跟TiO2上之染料有關,所以可將R2視為染料敏化TiO2後之阻抗。


    In this thesis, we study the dye-sensitized solar cells (DSSC) based on TiO2 and using porphyrin and phthalocyanine (Pc) dyes. The TiO2 films are deposited by the sol-gel method. The effects of central metal and substituent of porphyrins and phthalocyanines on the DSSC conversion efficiency are discussed. Action spectra and electrochemical impedance spectroscopy (EIS) data are also presented.

    For the central metal effect, we found that Zn is the best, among all porphyrin and phthalocyanine pairs with the same substituents. For the substituent effect, we found that -COOH is essential for good conversion efficiency, while the di-substituted dyes are better than the tetra-substituted ones.

    The conversion efficicency increase with the TiO2 thickness. While the maximum efficiency is reached at 9μm for the N-3 dye-sensitized. DSSC, that limit thickness is 6μm for the Pp-IX sensitized DSSC, and 4~5μm for the ZnP-IX sensitized DSSC. The conversion efficiency is 4% for the N-3 dye DSSC, 1.28% for the Pp-IX DSSC, and 1.7% for the ZnP-IX DSSC.

    EIS results show that the R2 value decreases as the TiO2 thickness increases. EIS data also show that R2 is related not only to the thickness of TiO2 but also to the dye absorbed on TiO2.

    目錄 第一章 緒論 1 1-1前言 1 1-2太陽能電池簡介 3 1-2-1半導體簡介 3 1-2-2 染料敏化太陽能電池簡介 7 1-2-3 染料敏化太陽能電池效能的定義 9 1-3交流阻抗法基本原理 12 第二章 文獻回顧 17 2-1 染料 17 2-1-1多聯吡啶(polypyridyl) 17 2-1-2酞花青(Phthalocyanine, Pc) 22 2-1-2-1酞花青簡介 22 2-1-2-2酞花青之光學性質 23 2-1-3紫質(Porphyrin) 31 2-1-3-1紫質(Porphyrin)分子結構及晶體結構 31 2-2 染料敏化太陽能電池之交流阻抗分析 35 第三章 實驗方法 39 3-1實驗設備 39 3-2實驗藥品 40 3-3基板處理程序 45 3-4 實驗元件製備 45 3-4-1 TiO2薄膜電極製備 45 3-4-2 電解質製備 46 3-5 TiO2薄膜電極分析 47 3-5-1 TiO2薄膜厚度 47 3-5-2 X光繞射分析 47 3-5-3 SEM表面分析 48 3-6電池元件光電化學測試 49 3-6-1實驗裝置 49 3-6-2光電流電壓特徵曲線 51 3-6-3交流阻抗法(AC impedence) 51 第四章 結果與討論 52 4-1薄膜電極分析 52 4-1-1 TiO2薄膜電極XRD分析 52 4-1-2 TiO2薄膜電極SEM分析 56 4-2染料之篩選 58 4-2-1染料外緣取代基對電池效率之影響 58 4-2-2染料中間金屬對電池效率之影響 67 4-3 Pp-IX、ZnP-IX與N-3 dye之比較 78 4-3-1 TiO2薄膜厚度之影響 78 4-3-2 最佳效率之光電流電壓特徵曲線 81 4-3-3太陽能電池之Action Spectrum 83 4-3-4染料敏化太陽能電池之交流阻抗分析 88 4-3-4-1 交流阻抗分析不同厚度之TiO2薄膜電極 88 4-4光強度對太陽能電池之影響 94 第五章 結論與建議 99 5-1結論 99 5-2建議 100 第六章 參考文獻 101

    [1]D. M. Chapin, C. S. Fuller and G. L. Pearson, J. Appl. Phys. ,25,676,
    (1954)

    [2]B. O’Regan and M.Grätzel, Nature, 353, 737, (1991).

    [3]M. A. Green, K. Emery, D. L. King, S. Igari and W. Warta, Prog.
    Photovolt: Res. Appl., 11, 346, (2003).

    [4]N.-G. Park, J. van de Lagemaat, and A. J. Frank, J. Phys. Chem. B,
    104, 8989, (2000)

    [5]M. Grätzel, J. Photochem. Photobio. A. 164 , 3, (2004)

    [6]S. K. Deb, R. Ellingson, S. Ferrere, A. J. Frank, B. A. Gregg, A. J.
    Nozik, N.Park, G. Schlichthörl, Presented at the 2nd world Conference
    and Exhibitionon Photovoltaic Solar Energy ;Vienna, Austria,
    (6-10 July 1998)

    [7]C. G. Garcia, C. J. Kleverlann, C. A. Bignozzi, N. Y. Murakami Iha,
    J. Photochem.Photobiol. A. 147, 143, (2002)

    [8]C. G. Garcia, C. J. Kleverlann, C. A. Bignozzi, N. Y. Murakami Iha,
    J. Photochem.Photobiol. A. 151, 165, (2002)

    [9]C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, J.Phys. Chem.
    B 106, 12693, (2002)

    [10]R. A. Marcus, J. Phys.Chem. 43, 679, (1965)

    [11]T. Hannappel, B. Burfeindt, W. Storck, F. Willing, J. Phys.Chem. B
    101, 6799, (1997)

    [12]R. J. Ellingson, J. B. Asbury, S. Ferrere, H. N. Ghosh, J. R. Sprague,
    T. Lian, A.Nozik, J. Phys. Chem. B 102, 6455, (1998)
    [13]Y. Tachibana, S. A. Haque, I. P. Mercer, J. R. Durrant, D. R. Klug, J.
    Phys.Chem. B 104, 1198, (2000)

    [14]T. A. Heimer, E. J. Heilweil, C. A. Bignozzi, G. J. Meyer, J. Phys.
    Chem. B104, 1198, (2000)

    [15]A. Kumar, P. G. Santangelo, N. S. Lewis, J. Phys. Chem. 96, 834,
    (1992)

    [16]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E.
    Muller,P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc.
    115, 6382, (1993)

    [17]G. Smestad, C. A. Bignozzi, R. Argazzi., Sol. Energy Mater. Solar
    Cells 32, 259, (1994)

    [18]H. Sugihara, L. P. Singh, K. Sayama, H. Arakawa, Md. K.
    Nazeeruddin,M. Grätzel, Chem. Lett., 1005, (1998)

    [19]K. Hara, H. Sugihara, Y. Tachibana, A. Islam, M. Yanagida, K.
    Sayama,H. Arakawa, G. Fujihashi, T. Horigu chi, T. Kinoshita, Langmuir 17, 5992, (2001)

    [20]Md. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, J. Am. Chem. Soc. 123, 1613, (2001)

    [21]Md. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek,P. Liska, N. Vlachopoulos, V. Shklover, Christian-H. Fischer, M. Grätzel, Inog.Chem.38 , 6298, (1999)

    [22]Kim. S. Finnie, John R. Bartlett, and James L. Woolfrey, Langmuir 14, 2744, (1998)

    [23]Helena Greijer Agrell, Jan Lindgren, Anders Hagfeldt, Solar
    Energy 75, 169, (2003)

    [24]C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, J.Phys. Chem.
    B 106, 12693, (2002)

    [25]Fumihiko Aiga, Tsukasa Tada, J. Molecular Structure 658, 25, (2003)

    [26]Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, J. Phys. Chem. B,107, 8981, (2003)

    [27]C. J. Barbé, F. Árendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover and M. Grätzel, “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Application,” J. Am. Ceram. Soc., 80, 3157, (1997)

    [28]Braun, S., Rappoport, S., Zusman, R., Anvir, O., Ottoolenghi, M., “Biochemically active sol-gel glasses. The trapping of enzymes”, Mater. Lett., 10, 1-5, (1990)

    [29]Liu, Z. T., Kwok, H.S., Djurišić, A. B., “The optical functions of metal phthalocyanines”, J. Phys. D: Appl. Phys., 37, 678, (2004)

    [30]Cook, M. J., “Phthalocyanine thin films”, Pure Appl. Chem., 71, 2145, (1999)

    [31]Zeug, A., Paul, A., Röder, B., “Observation of the phase transition in phospholipid liposomes taking advantage of the particular optical properties of octa-α-butyloxy-H2Phthalocyanines”, J. Porphyrins Phthalocyanines, 5, 663, (2001)

    [32]Leznoff, C. C., Lever, A. B. P., Phthalocyanines Properties and Applications, VCH: New York, 3, 188, (1989)

    [33]Yoshida, H., Tsutsumi, K., Sato, N., “Unoccupied electronic states of 3d-transition metal phthalocyanines studied by inverse photoemission spectroscopy”, J. Electron Spectroscopy Related Phenomena, 121, 83, (2001)

    [34]Huang, J. D., Zhang, Y. F., Li, J. Q., “Ab Initio Study on Some Metal Phthalocyanines”, Chinese J. Struct. Chem., 21, 214, (2002)
    [35]Md. K. Nazeeruddin, R. Humphry-Baker, M. Grätzel, D. Wohrle, G. Schneider,A. Hirth, N. Trombach, J. Porphyrins Phthalocyanines 3, 230, (1999)

    [36]Brunink, J. A. J., Natale, C.D., Bungaro, F., Davide, F. A. M., D’Amico, A., Paolesse, R., Boschi, T., Faccio, M. and Ferri, G., Anal. Chem. Acta., 325, 53, (1996)

    [37]Jentzen W., Song X.Z. and Shelnutt J.A., J. Phys. Chem., B101, 1684, (1997)

    [38]Barkigia, K.M., Berber, M.D., Fajer, J., Medforth, C.J., Ronner M.W.and Smith K.M., J. Am. Chem. Soc., 112, 8851, (1990)

    [39]Sparks, L.D., Medforth, C.J., Park, M.S., Chamberlain, J.R., Ondrias, M.R., Senge, M.O., Smithc, K.M. and Shelnutt, J. A., J. Am. Chem. Soc., 115, 581, (1993)

    [40]T. Ma, K. Inoue, H. Noma, K. Yao, E. Abe, J. Photochem. and Photobiology A: Chem., 152, 207, (2002)

    [41]W. M. Campbell , A. K. Burrell , D. L. Officer , K. W. Jolley, Coord. Chem. Rev. 248, 1363, (2004)

    [42]J. Jasieniak, M. Johnston, Eric R. Waclawik, J. Phys. Chem. B, 108, 12962, (2004)

    [43]A. Brune, G. Jeong, P. A. Liddell, T. Sotomura, Thomas A. Moore, Ana L. Moore, Devens Gust, Langmuir, 20, 8366, (2004)

    [44]J. Weidmann, Th. Dittrich, E. Konstantinova, I. Lauermann, I. Uhlendorf, F. Koch, Sol. Energ. Mat. Sol. Cells, 56, 153, (1999)

    [45]L. Han, N. Koide, Y. Chiba, T. Mitate, Appl. Phys. Lett., 84, 2433, (2004)

    [46]C. Longo , M. A. D. Paoli, J. Braz. Chem. Soc., 14, 889, (2003)

    [47]T. Asano, T. Kubo, Y. Nishikitani, J. Photochem. Photobiol. A: Chem., 164, 111, (2004)

    [48]Powder Diffraction File: Search Manual, Hanawalt Method Inorganic, complied by the JCPDS: Interational Cnetre for Diffraction Data; in cooperation with the American Ceramic Society, Swarthmore, Pennsylvania, (1991)

    [49]S. Cherian, C.C. Wamser, J. Phys. Chem. B 104, 3624, (2000)

    [50]N. Robertson, Angew. Chem. Int. Ed., 45, 2338, (2006)

    [51]D. Kuang, S. Ito, B. Wenger, C. Klein, J.-E Moser, R. H.-Baker, S. M. Zakeeruddin, M. Grätzel, J. AM. CHEM. SOC., 128, 4146, (2006)

    QR CODE