簡易檢索 / 詳目顯示

研究生: 劉烝竣
Zheng-Jun Liu
論文名稱: 三繞組感應式功率傳輸系統的研製
Design and Implementation of Three-Winding Inductive Power Transfer Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 徐國鎧
Kuo-Kai Shyu
楊勝明
Sheng-Ming Yang
楊士進
Shih-Chin Yang
劉益華
Yi-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 121
中文關鍵詞: 零電壓切換串聯諧振感應式功率傳輸三繞組
外文關鍵詞: zero voltage switching, series resonant, inductive power transfer, three-winding
相關次數: 點閱:464下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一部三繞組感應式功率傳輸系統的研製。主電路分為兩級,前級為全橋串聯諧振轉換器,利用串聯諧振電路達到零電壓切換,減少切換損失,提升效率。後級採用降壓式轉換器,調整功率元件的責任週期,藉以改變輸出的電壓或電流,達到定電壓或定電流的輸出。
    文中繞製三個圓盤型繞組,包括一次側及二次側的耦合繞組以及第三側的中間繞組,透過磁場耦合的方式達成感應式功率傳輸,藉由第三繞組,提升耦合能力,因此不需使用磁芯。
    本文使用德州儀器公司所生產的TMS320F2808數位信號處理器,作為控制核心,執行預測型控制法則,藉由調控權重因子得到比傳統比例積分器更佳的動態性能。
    最後,文中研製一套輸入電壓為直流220V,輸出電壓為直流130V,輸出功率為2kW的感應式功率轉換器。實測結果說明,本文所研製的系統在一、二次側繞組距離為20公分時,滿載轉換效率約可達到88%,本文所提的三繞組感應式功率傳輸系統,具有比雙繞組感應式功率傳輸系統更長的傳輸距離。相關的成果,未來可推廣作為電動汽、機車的感應式充電器。


    This thesis proposes the design and implementation of three-winding inductive power transfer systems. The main circuit of the power transfer system includes two stages. The first stage is a full-bridge series resonant converter, which uses a series resonant circuit to reach zero voltage switching and then reduces the switching loss and increases efficiency. The second stage uses a buck converter to regulate the duty cycle of the power device to adjust the output voltage or output current, and achieves a constant voltage output or a constant current output.
    Three panel windings are implemented. The windings include a primary winding, a secondary winding, and a third winding that is a short- circuited winding. By using this proposed method, no core is reguired.
    A digital signal processor, TMS320F2808, made by Texas Instrument, is used to execute the predictive controller algorithms. By adjusting the weighting factor, the predictive controller provides better performance than the PI controller.
    Finally, an inductive power transfer system, which has DC 220V input, DC 130V output, rated power 2kW, has been implemented. Experimental results show the proposed inductive power transfer system can provide 88% efficiency at a 20cm distance between the primary winding and the secondary winding. In addition, the proposed three-winding inductive power transfer system can have a longer air gap than the traditional two-winding inductive power transfer system. The results of the proposed inductive power transfer system could be extended as an inductive power transfer system for electric vehicles and electric motorcycles.

    中文摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 X 符號索引 XI 第一章 緒論 1 1.1 背景及動機 1 1.2 文獻回顧 2 1.3 論文大綱 5 第二章 感應繞組介紹 6 2.1 簡介 6 2.2 基本原理 6 2.3 等效模型 8 2.4 參數測量 12 2.5 三繞組及雙繞組的分析及比較 13 2.5.1 三繞組 13 2.5.2 具磁芯的雙繞組 14 第三章 轉換器電路分析 17 3.1 簡介 17 3.2 電路架構 17 3.3 全橋電路 18 3.3.1 零電壓切換 18 中文摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 X 符號索引 XI 第一章 緒論 1 1.1 背景及動機 1 1.2 文獻回顧 2 1.3 論文大綱 5 第二章 感應繞組介紹 6 2.1 簡介 6 2.2 基本原理 6 2.3 等效模型 8 2.4 參數測量 12 2.5 三繞組及雙繞組的分析及比較 13 2.5.1 三繞組 13 2.5.2 具磁芯的雙繞組 14 第三章 轉換器電路分析 17 3.1 簡介 17 3.2 電路架構 17 3.3 全橋電路 18 3.3.1 零電壓切換 18 3.3.2 工作原理 19 3.3.3 一次諧波近似法 20 3.4 耦合繞組 23 3.4.1 雙繞組的效率分析 26 3.4.2 三繞組的效率分析 29 3.4.3 電壓增益 34 3.5 降壓式轉換器 36 3.6 充電方式 43 第四章 控制器設計 44 4.1 簡介 44 4.2 待控系統模型 45 4.3 預測型控制器 49 第五章 系統研製 57 5.1 簡介 57 5.2 硬體電路 59 5.2.1 電路架構 59 5.2.2 閘極驅動電路 66 5.2.3 電壓偵測電路 67 5.2.4 電流偵測電路 68 5.2.5 過電流保護電路 69 5.2.6 電源電路 70 5.2.7 數位訊號處理器 71 5.3 軟體架構 73 5.3.1 主程式 73 中文摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 X 符號索引 XI 第一章 緒論 1 1.1 背景及動機 1 1.2 文獻回顧 2 1.3 論文大綱 5 第二章 感應繞組介紹 6 2.1 簡介 6 2.2 基本原理 6 2.3 等效模型 8 2.4 參數測量 12 2.5 三繞組及雙繞組的分析及比較 13 2.5.1 三繞組 13 2.5.2 具磁芯的雙繞組 14 第三章 轉換器電路分析 17 3.1 簡介 17 3.2 電路架構 17 3.3 全橋電路 18 3.3.1 零電壓切換 18 3.3.2 工作原理 19 3.3.3 一次諧波近似法 20 3.4 耦合繞組 23 3.4.1 雙繞組的效率分析 26 3.4.2 三繞組的效率分析 29 3.4.3 電壓增益 34 3.5 降壓式轉換器 36 3.6 充電方式 43 第四章 控制器設計 44 4.1 簡介 44 4.2 待控系統模型 45 4.3 預測型控制器 49 第五章 系統研製 57 5.1 簡介 57 5.2 硬體電路 59 5.2.1 電路架構 59 5.2.2 閘極驅動電路 66 5.2.3 電壓偵測電路 67 5.2.4 電流偵測電路 68 5.2.5 過電流保護電路 69 5.2.6 電源電路 70 5.2.7 數位訊號處理器 71 5.3 軟體架構 73 5.3.1 主程式 73 5.3.2 中斷程式 73 第六章 實測結果 76 6.1 簡介 76 6.2 模擬與實測 76 第七章 結論與建議 97 參考文獻 98

    [1]M. Kim, H. Kim, D. Kim, Y. Jeong, H.H. Park, and S. Ahn, “A three-phase wireless-power-transfer system for online electric vehicles with reduction of leakage magnetic fields,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 11, pp. 3806-3813, Nov. 2015.
    [2]J. M. Miller, and A. Daga, “Elements of wireless power transfer essential to high power charging of heavy duty vehicles,” IEEE Transactions on Transportation Electrification, vol. 1, no. 1, pp. 26-39, June 2015.
    [3]J. M. Miller, 0. C. Onar, and M. Chinthavali, “Primary-side power flow control of wireless power transfer for electric vehicle charging,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol.3, no. 1, pp. 147-162, Mar. 2015.
    [4]J. Gozalvez, “First wireless electric vehicle charging trial, ” IEEE Vehicular Technology Magazine, pp. 10-17, June 2012.
    [5]F. Musavi, and W. Eberle, “Overview of wireless power transfer technologies for electric vehicle battery charging,” IET Power Electronics, vol. 7, iss. 1, pp. 60-66, 2014.
    [6]G. Simard, M. Sawan, and D, Massicotte, “High-speed OQPSK and efficient power transfer through inductive link for biomedical implants,” IEEE Transactions on Biomedical Circuits and Systems, vol. 4, no. 3, pp. 192-200, June 2010.
    [7]J. Park, D. Kim, K. Hwang, H. H. Park, S. I. Kwak, J. H. Kwon, and S. Ahn, “A resonant reactive shielding for planar wireless power transfer system in smartphone application, ” IEEE Transactions on Electromagnetic Compatibility, vol. 59, no. 2, pp. 695-703, Apr. 2017.
    [8]X. D. T. García, J. Vázquez, and P. Roncero-Sánchez, “Design, implementation issues and performance of an inductive power transfer system for electric vehicle chargers with series-series compensation, ” IET Power Electronics, vol. 8, no. 10, pp. 1920-1930, Oct. 2015.
    [9]Q. Zhu, L. Wang, Y. Guo, C. Liao, and F. Li, “Applying LCC compensation network to dynamic wireless EV charging system,” IEEE Transactions on Industrial Electronics, vol. 63, no. 10, pp. 6557-6567, October 2016.
    [10]A. A. S. Mohamed, A. A. Marim, and 0. A. Mohammed, “Magnetic
    design considerations of bidirectional inductive wireless power
    transfer system for EV applications, ” IEEE Transactions on
    Magnetics, vol. 53, no. 6, pp. 1-5, June 2017.
    [11]Y.-C. Hsieh, Z.-R. Lin, M.-C. Chen, H.-C. Hsieh, Y.-C. Liu, and H.-J. Chiu, “High-efficiency wireless power transfer system for electric vehicle applications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 8, pp. 942–946, 2017.
    [12]W. Zhang and C. C. Mi, “Compensation topologies of high-power wireless power transfer systems,” IEEE Transactions on Vehicular Technology, vol. 65, no. 6, pp. 4768–4778, June 2016.
    [13]N. H. Kutkut, D. M. Divan, D. W. Novotny, R. H. Marion, “Design considerations and topology selection for a 120-kW IGBT converter for EV fast charging,” IEEE Transactions on Power Electronics, vol. 13, no. 1, pp. 169 - 178, Jan. 1998.
    [14]C. Zheng, J. S. Lai, R. Chen, W. E. Faraci, Z. U. Zahid, B. Gu, L. Zhang, G. Lisi, D. Anderson, “High-efficiency contactless power transfer system for electric vehicle battery charging application,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1 pp. 65 - 74, Mar. 2015.
    [15]C. Zheng, J. S. Lai, R. Chen, W. E. Faraci, Z. U. Zahid, B. Gu, L. Zhang, G. Lisi, D. Anderson, “High-efficiency contactless power transfer system for electric vehicle battery charging application,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1 pp. 65 - 74, Mar. 2015.
    [16]H. Tanabe, T. Kojima, A. Imakiire, K. Fuji, M. Kozako, M. Hikita, “Comparison performance of Si-IGBT and SiC-MOSFET used for high efficiency inverter of contactless power transfer system,” IEEE PEDS-2015, pp. 707 - 710, 2015.
    [17]M. Budhia, J. T. Boys, G. A. Covic, C. Y. Huang, “Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems,” IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 318 - 328, Jan. 2013.
    [18]M. Budhia, G. A. Covic, J. T. Boys, “Design and optimization of circular magnetic structures for lumped inductive power transfer systems,” IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3096 - 3108, Nov. 2011.
    [19]R. Bosshard, J. Muehlethaler, J. W. Kolar, and I. Stevanovic, “Optimized magnetic design for inductive power transfer coils,” IEEE PEDS-2013, pp. 1812–1819.
    [20]M. T. Outeiro, G. Buja, and D. Czarkowski, “Resonant power converters: an overview with multiple elements in the resonant tank network,” IEEE Industrial Electronics Magazine, vol. 10, no. 2, pp. 21–45, June 2016.
    [21]C. S. Wang, O. H. Stielau, G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1308 - 1314, Oct. 2005.
    [22]Z. Huang, S. C. Wong, C. K. Tse, "Design methodology of a series-series inductive power transfer system for electric vehicle battery charger application," IEEE ECCE-2014, pp. 1778 - 1782, 2014.
    [23]L. Zhao, D. J. Thrimawithana, U. K. Madawala, "A hybrid bi-directional IPT system with improved spatial tolerance," IEEE IFEEC-2015, pp. 1 - 6, 2015.
    [24]M. Budhia, J. T. Boys, G. A. Covic, and C. Y. Hung, "Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems," IEEE Transactions on Power Electronics, vol. 60, no. 1, pp. 318-328, Nov. 2013.
    [25]D. Patil, M. Sirico, L. Gu, and B. Fahimi, “Maximum efficiency tracking in wireless power transfer for battery charger: Phase shift and frequency control,” IEEE ECCE-2016, Milwaukee, WI, USA, Sep. 2016, pp. 1–8.
    [26]M. J. Neath, A. K. Swain, U. K. Madawala, D. J. Thrimawithana, “An optimal PID controller for a bidirectional inductive power transfer system using multiobjective genetic algorithm,” IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1523 - 1531, Mar. 2014.
    [27]D. J. Thrimawithana, U. K. Madawala, and M. Neath, "A synchronization technique for bidirectional IPT systems," IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 301 - 309, Jan. 2013.
    [28]U. K. Madawala, M. Neath, and D. J. Thrimawithana, "A power frequency controller for bidirectional inductive power transfer systems," IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 310 - 317, Jan. 2013.
    [29]J. Y. Lee, B. M. Han, "A bidirectional wireless power transfer EV charger using self-resonant PWM," IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 1784 - 1787, Apr. 2015.
    [30]F. A. Frank, M. Castlla and P. Bauer, "Adaptive sliding-mode control for a multiple-user inductive power transfer system without need for communication," IEEE Transactions on Power Electronics, vol. 60, no. 1, pp. 271 - 279, Apr. 2013.
    [31]Zhang, W., White, J. C., Malhan, R. K., and Mi, C. C. "Loosely coupled transformer coil design to minimize EMF radiation in concerned areas." IEEE Transactions on Vehicular Technology, vol. 65, no. 6, pp. 4779-4789, 2016.
    [32]S. Y. Jeong, H. G. Kwak, G. C. Jang, and C. T. Rim, “Living object detection system based on comb pattern capacitive sensor for wireless EV chargers,” IEEE SPEC-2016, Dec. 2016, pp. 1–6.
    [33]莊豐銘,感應式功率傳送系統的控制及研製,國立台灣科技大學,碩士論文 2017.
    [34]R. Laouamer, M. Brunello, J. P. Ferrieux, O. Normand, N. Buchheit, "A multi-resonant converter for non-contact charging with electromagnetic coupling," IEEE IECON 1997, vol. 2, pp. 792 - 797, 1997.
    [35]R. Chen, C. Zheng, Z. U. Zahid, E. Faraci, W. Yu, J Lai, M. Senesky, D. Anderson and G. Lisi, “Analysis and parameters optimization of a contactless IPT system for EV charger,” IEEE APEC-2014, pp. 1654 - 1661, Mar. 2014.
    [36]S. Moon, B.-C. Kim, S.-Y. Cho, C.-H. Ahn, and G.-W. Moon, “Analysis and design of a wireless power transfer system with an intermediate coil for high efficiency,” IEEE Transactions on Industrial Electronics, vol. 61, no. 11, pp. 5861–5870, Nov. 2014.
    [37]D. J. Ahn and S. C. Hong, “A study on magnetic field repeater in wireless power transfer,” IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 360–371, Jan. 2013.
    [38]Liuping Wang, Model Predictive Control System Design and Implementation Using MATLAB, Springer Verlag 2013.
    [39]陳凌漢,LCC補償電路達成感應式功率傳輸系統的研製,國立台灣科技大學,碩士論文 2018.

    無法下載圖示 全文公開日期 2024/08/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE