簡易檢索 / 詳目顯示

研究生: 盧偉凡
Wei-fan Lu
論文名稱: 微機械加工技術製備微電極陣列探針與測量分析物絕對濃度的方法
Fabrication of Microeletrode Array Probes by Micromachining Technology and the Method of Measuring Absolute Concentration of Analyte
指導教授: 曾婷芝
Ting-chih Tseng
口試委員: 陳建宏
Chien-hung Chen
戴龑
Yen Tai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 101
中文關鍵詞: 生物感測器電化學微電極
外文關鍵詞: biosensor, microeletrode, electrical chemistry
相關次數: 點閱:281下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在電化學生物感測器當中,通常用可植入式電極探針偵測生物體內的神經傳導物質,其中電極材料的選擇相當多元,像是白金(Pt)電極、金電極(Au)、網印碳電極(C)等。通常可根據所將偵測待測分析物的種類,以選定可提供最佳感測靈敏度的電極材料,由於白金穩定性極佳,在測試時電位穩定不易受干擾,且白金電極與生物感測中常用之生物辨識元件-氧化酵素之產物過氧化氫(H2O2)反應所產生的氧化電流很大,因此我們在製備電極時所選擇的材質是白金。此外,由於在進行神經傳導物質濃度偵測時,需將感測器植入生物體內,所以電極探針需具備強韌的機械強度,但是同時應避免破壞生物組織,因此,對於探針尺寸方面要求極高,因此我們採用微機械加工的半導體製程技術去製備探針,整個製程包括微影製程(lithography process)、蝕刻(etching process)、化學氣相沉積(chemical vapor deposition)及物理氣相沉積(physical vapor deposition),使我們可以得到尺寸規格統一且導電性極佳的微型化電極。在製程方面我們著重由電極探針製程效率,且以大量生產為目標,因此我們在進行電極的微機械加工製程時都,都會選擇最合適的實驗機臺進行製程,並針對製程實驗參數進行最佳化。


    Implantable electric chemical biosensors are usually used for the monitoring of neurotransmitters in vivo. There are various electrode materials for the fabrication of biosensors, such as platinum, gold, carbon and so on; here, platinum electrode was chosen as our electrode material since. Platinum has excellent stability for chemical reaction and creates high oxidation current for hydrogen peroxide (the product of most oxidase enzymatic reactions) after the oxidation reaction at the electrode surface. Since when measuring the biosensor in vivo, the biosensor requires to be implanted in the live rodents, it needs good mechanical strength. However, the damage of tissue during the implantation process should be minimized. Therefore, we apply micromachining technology to design miniaturized probes. The micromachining process, includes lithography process, etching process, and chemical and physical evaporation deposition, etc. So that we can get uniform microelectrodes and the resulting electrodes have good conductivity. The purpose of the micromachining process is for mass production, so we optimized the parameters for fabrication and chose the most suitable instruments for the micromachining process of our microelectrode array probes.

    第一章、緒論 1 1.1、生物感測器簡介 1 1.2、微電極陣列探針於生物感測器之應用與介紹 4 1.3、半導體加工技術簡介 8 1.3.1、濕式清洗的目的與方法 9 1.3.2、熱氧化與介電層 12 1.3.3、微影技術介紹 15 1.3.4、金屬與介電薄膜沉積 25 1.3.5、蝕刻技術介紹 31 第二章、微電極陣列探針之微機械加工製程 38 2.1、探針金屬圖層之形成 38 2.1.1、爐管熱氧化 38 2.1.2、第一道微影製程 40 2.2.3、金屬層沉積 44 2.2、探針表面絕緣 46 2.2.1、介電層沉積 47 2.2.2、第二道微影製程 48 2.2.3、電極端與封裝端蝕刻 50 2.3、探針邊界輪廓之定義 51 2.3.1、第三道微影製程 51 2.3.2、探針邊界輪廓蝕刻 54 第三章、以電化學法量測待測物的絕對濃度之實驗方法 58 3.1、校正曲線修正原理 58 3.2、分析測量方法 59 3.3、實驗步驟 61 第四章、 結果與討論 65 4.1、金屬圖層之形成 65 4.1.1、第一階段微影製程結果分析 65 4.1.2、金屬層圖案化結果 68 4.2、探針表面絕緣 71 4.2.1、第二階段微影製程結果分析 71 4.2.2、電極端與封裝端之蝕刻結果討論 74 4.3、探針邊界輪廓之定義 76 4.3.1、第三階段微影製程結果分析 76 4.3.2、探針邊界輪廓蝕刻結果討論 78 4.4、微電極陣列探針良率測試 80 4.4.1、微電極陣列探針反應測試 80 4.4.2、探針介電層之絕緣效果測試 82 4.4.3、微電極陣列探針製備之榖氨酸感測器測試 84 4.5、以電化學法量測待測物的絕對濃度之結果與討論 86 4.5.1、背景電流對於量測結果的影響 86 4.5.2、過氧化氫絕對濃度量測結果 88 4.5.3、穀氨酸絕對濃度量測結果 90

    1. Castillo, J., Gaspar, S., Letha, S., Niculescua, M., Mortari, A., Bontideana, I., Soukharevb, V., Dorneanu, S. A., Ryabovc A. D., & Csoregi E. (2004). Biosensors for life quality: Design, development and applications. Sensors and Actuators B: Chemical, 102(2), 179-194.
    2. Bard, A. J., & Faulkner, L. R. (2001). Electrochemical Methods: Fundamentals and Applications. New York: Wiley.
    3. Shen, J. (2007). Development and Characterization of Thick-film Printed Electrochemical Biosensors.Case Western Reserve University.
    4. Plummer, J. D., Deal, M. D., & Griffin, P. B. (2000). Silicon VLSI Technology: Fundamentals, Practice and Modeling, Upper Saddle River, New Jersey, MA: Prentice Hall.
    5. Xiao, H. 著. 羅正忠, 張鼎張 譯. (2002) 半導體製程技術導論 (Introduction to Semiconductor Manufacturing Technology), 台北, 台灣培生教育出版: 學銘圖書發行.
    6. Wassum, K. M., Tolosa, V. M., Wang, J., Walker, E., Monbouquette, H. G., & Maidment, N. T. (2008). Silicon wafer-based platinum microelectrode array biosensor for near real-time measurement of glutamate in vivo. Sensors, 8(8), 5023-5036.
    7. Frey, O., van der Wal, P., de Rooij, N., & Koudelka-Hep, M. (2007, August). Development and Characterization of Choline and L-Glutamate Biosensor Integrated on Silicon Microprobes for In-vivo Monitoring. Conference of the IEEE EMBS, Cite Internationale, Lyon, France.
    8. Hammerle, H., Kobuch, K., Kohler, K., Nisch, W., Sachs, H., & Stelzle, M. (2002). Biostability of micro-photodiode arrays for subretinal implantation. Biomaterials, 23(3), 797-804.
    9. Bai, Q., & Wise, K. D. (2001). Single-Unit Neural Recording with Active Microelectrode Arrays. IEEE Transactions on Biomedical Engineering, 48(8), 911-920.
    10. Campbell, P.K., Jones, K.E., Huber, R.J., Horch, K.W., & Normann, R. A. (1991). A Silicon-Based, Three-Dimensional Neural Interface: Manufacturing Processes for an Intracortical Electrode Array. IEEE Transactions on Biomedical Engineering, 38(8), 758-768.
    11. Csicsvari, J., Henze, D. A., Jamieson, B., Harris, K. D., Sirota, A., Bartho, P., Wise, K. D., & Buzsaki, G. (2003). Massively Parallel Recording of Unit and Local Field Potentials Wih Silicon-Based Electrodes. Journal of Neurophysiology, 90, 1314-1323.
    12. Wise, K.D., Anderson, D.J., Hetke, J.F., Kipke, D.R., & Najafi, K., (2004). Wireless Implantable Microsystems: High-Density Electronic Interfaces to the Nervous System. Proceedings of the IEEE, 92(1), 76-97.
    13. Zhong Y., Yu X., Gilbert R., & Bellamkonda R. V. (2001). Stabilizing electrode-host interfaces: a tissue engineering approach. Journal of Rehabilitation Research and Development, 38(6) 627-632.
    14. Cheung, K. C., Renaud, P., Tanila, H., & Djupsund, K. (2006). Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosensors and Bioelectronics, 22(8): 1783-1790.
    15. Richardson Jr., R. R., Miller, J. A., & Reichert, W. M. (1993). Polyimides as biomaterials: preliminary biocompatibility testing. Biomaterials, 14(8), 627-635.
    16. Seo, J. -M., Kim, S. J., Chung, H., Kim, E. T., Yu, H. G., & Yu, Y. S. (2004). Biocompatibility of polyimide microelectrode array for retinal stimulation. Materials Science and Engineering, 24(1-2), 185-189.
    Biomaterials, 14(8), 627-635.
    17. Carvalho, F. A., Silva, J. M., & Saldanha, C. (2004). Amperometric measurements of nitric oxide in erythrocytes. Biosensors and Bioelectronics,20(3), 505-508.

    QR CODE