簡易檢索 / 詳目顯示

研究生: 陳冠榮
Kuan-Jung Chen
論文名稱: 以新穎雙金屬奈米觸媒製備電流式生物感測器
Fabrication of amperometric biosensor based on novel bimetallic nanocatalysts
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
Tse-Chuan Chou
杜景順
Jing-Shan Do
王詩涵
Shih-Han Wang
周宏隆
Hung-Lung Chou
蘇威年
Wei-Nien Su
王文
Wen Wang
張君照
Chun-Chao Chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 171
中文關鍵詞: 雙金屬奈米觸媒生物感測器電流式
外文關鍵詞: bimetallic nanocatalysts, biosensor, amperometric
相關次數: 點閱:323下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,由於白金奈米顆粒具有獨特的物理化學以及電催化特性,許多學者嘗試將此奈米材料應用於製備生物感測器上。本研究目標主要是合成出以白金為主的雙金屬奈米觸媒,並實際應用於製備電化學式感測平台,希望藉由此平台能製備出高性能的電化學生物感測器。本研究分為兩大主題:首先是以雙氧水為主的第一代葡萄糖感測器,另一主題則是直接催化葡萄糖為主的第四代葡萄糖感測器。
    (I). 在第一個主題,主要以修飾Watanabe法將兩種雙金屬奈米顆粒(PtM, M = Ir, Pd)成功地沈積在多層壁奈米碳管上(PtM/MWCNTs),並具有良好的分散性,同時本研究也利用XRD、TEM、 ICP以及 XAS進行材料上物理化學的分析。雙氧水電化學感測器的製備方式是以Nafion包覆奈米金屬觸媒修飾於玻璃碳電極表面,發現以Pt-Pd/MWCNTs所製備出的雙氧水感測器性能比Pt-Ir/MWCNT來的好,並也利用XAS來證明電子傳遞效應對雙氧水催化能力的影響。另外,從電化學測試上發現以Pt-Pd/MWCNTs所製備出的雙氧水感測器俱有良好的再現性、儲存安定性以及抗干擾能力,最後並將Pt-Pd/MWCNTs此奈米金屬觸媒應用於製備葡萄糖感測試片,製備方式首先將觸媒溶液滴覆在Au/Ti薄膜微型試片的工作電極表面上,再以靜電吸引的方式將酵素層 (CS-GA-GOx) 修飾於觸媒層之上;所製備出的葡萄糖感測試片可量測之線性範圍為0.5 mM~22 mM ( R2 = 0.996),其靈敏度為49.9 μA mM-1 cm-2,並發現此感測試片具有良好的再現性以及穩定性,並也有良好的抗干擾能力。
    (II). 在第二主題,主要利用白金-金殼核奈米金屬顆粒 (Aurod@Pt) 製備出一高感度非酵素型電流式葡萄糖感測器;此奈米金屬顆粒也以XRD、TEM、UV-vis以及 XPS等儀器來分析此奈米顆粒物理化學等特性。此葡萄糖感測器製備方式是以Nafion包覆奈米金屬觸媒直接固定於玻璃碳電極表面(Nafion/Aurod@Pt/GCE)。由此修飾電極與Nafion/Ptdendrite/GCE之結果比較發現,其催化葡萄糖氧化的能力較好,並且白金於電極上的承載量較少(1.48×10-5 gPt/cm2),代表此殼核結構之奈米金屬觸媒,可以較少白金量達到較佳的催化效果。同時也發現此感測電極可以較低的施加電位進行催化反應,也同時具有良好的再現性與抗干擾能力。


    In recent years, several studies have demonstrated that Pt NPs have excellent prospects for use in biosensors owing to their physical and chemical properties. They facilitate electron transfer and increase the sensor’s surface area, thus achieving enhanced mass transport with good biocompatibility. The goal of this research was to synthesize Pt-based bimetallic nanocatalysts for high -performance electrochemical sensing platforms with wide linear ranges, high sensitivities, fast response times, good biocompatibility, stability, and selectivity. Two kinds of glucose electrochemical biosensors with important clinical significance and applications were selected for study and development; namely, first generation (H2O2-based) and fourth generation (enzyme free) glucose biosensors, associated with diabetes management and/or prevention.
    The following research topics have been addressed in this dissertation:
    (I). A new highly catalytic and intensely sensitive amperometric sensor based on PtM (where M=Pd,Ir) bimetallic nanoparticles (NPs) for the rapid and accurate estimation of hydrogen peroxide (H2O2) by electrooxidation in physiological conditions is reported. PtPd and PtIr NPs-decorated multiwalled carbon nanotube nanocatalysts (PtM/MWCNTs) were prepared by a modified Watanabe method, and were characterized by XRD, TEM, ICP, and XAS. The sensors were constructed by immobilizing PtM/MWCNTs nanocatalysts in a Nafion film on a glassy carbon electrode. The PtPd sensor showed a better performance in H2O2 sensing than did the PtIr counterpart. Explanations were sought from XAS measurements to explain the reasons for differences in sensor activity. In addition, the PtPd/MWCNTs nanocatalyst sensor electrode also exhibited excellent reproducibility and stability. Along with these attractive features, the sensor electrode also displayed very high specificity to H2O2 with complete elimination of interference from UA, AA, AAP and glucose. The biosensor was constructed by immobilizing the PtPd-MWCNTs catalysts in a Nafion film on a Au/Ti micro-strip working electrode surface. An inner Nafion film coating was used to eliminate common interferents such as UA, AA and AAP. Finally, a enzyme layer (CS-GA-GOx) was fabricated by electrostatic adsorbed method. The sensitivity determined using the slope of the calibration plot between 0.5 and 22 mM ( R2 = 0.996) was found to be, on an average, 49.9 μA mM-1 cm-2. In addition, the biosensor exhibited high reproducibility, good storage stability and satisfactory anti-interference ability. The applicability of the biosensor to actual serum sample analysis was also evaluated.
    (II). A new highly catalytic and intensely sensitive amperometric sensor based on bimetallic heteronanostructures, consisting of a dendritic Pt shell and rod-shaped structured Au cores (Aurod@Pt), i.e. bimetallic nanoparticles, for the rapid and accurate estimation of glucose by direct electro-oxidation under physiological conditions is reported. The physicochemical characteristics of the bimetallic Aurod@Pt nanocatalysts were investigated using XRD, TEM, UV-vis, and XPS. The glucose sensor was constructed in a simple manner by immobilizing Aurod@Pt bimetallic nanoparticles, in a Nafion film, on a glassy carbon electrode (Nafion/Aurod@Pt/GCE). The amount of Pt used, to form the catalytic sensing system, is extremely small (1.48×10-5 gPt/cm2), yet it shows unusually high sensor activity for the electrochemical oxidation of glucose compared with Nafion/Ptdendritic/GCE. The Nafion/Aurod@Pt/GCE was found to exhibit a low working potential, fast amperometric response, high sensitivity, good reproducibility and long-term stability, a very high specificity to glucose with complete elimination of interference from UA, AA, AAP, and chloride ions; thereby indicating it can reliably provide efficient signal transduction in an enzyme-free glucose biosensor.

    Abstract (Chinese)………………………………………………………………………………………I Abstract (English)……………………………………………………………………………………..III Acknowledgement (Chinese)……………………………………………………………...........VI Table of content……………………………………………………………………………………...VIII List of Figures…..………………………………………………………….……………………………XI List of Tables.……..………………………………………………………………………………….,XVI Chapter 1. Introduction 1 1.1. Chemical sensors and biosensors 1 1.1.1. Chemical sensors and biosensors definition 2 1.2. Biosensors and their application 3 1.2.1. Health care application of biosensors 6 1.2.2. Food and drink analysis application of biosensors 7 1.2.3. Environmental monitoring application of biosensors 8 1.2.4. Defense and military application of biosensors 9 1.3. Transduction methods of biosensors 10 1.3.1. Electrochemical based biosensors 11 1.3.2. Amperometric biosensors 11 1.3.3. Potentiometric biosensors 18 1.3.4. FET-based biosensors 21 1.3.5. Optical based biosensors 25 1.3.6. Quartz crystal microbalance (QCM) based biosensors 29 1.3.7. Thermal or calorimetric based biosensors 31 1.4. Importance of hydrogen peroxide biosensor 32 1.5. Importance of glucose biosensor 34 1.5.1. Diabetes status 34 1.5.2. Evolution of glucose biosensor 40 1.5.2.1. First generation glucose biosensor 42 1.5.2.2. Second generation glucose biosensor 45 1.5.2.3. Third generation glucose biosensor 49 1.5.2.4. Forth generation glucose biosensor 51 1.6. Motivation and scope of this research 56 1.7. Significance of this research 58 Chapter 2. Bimetallic PtM (M=Pd, Ir) nanoparticle decorated multi-walled carbon nanotube enzyme-free, mediator-less amperometric sensor for hydrogen peroxide 60 2.1. Introduction 60 2.2. Experimental 62 2.2.1. Material 62 2.2.2. Synthesis of bimetallic PtM (M=Pd,Ir) NPs-coated MWCNTs nanocatalysts (PtM/MWCNTs ) 63 2.2.3. Preparation of PtM/MWCNTs (M = Pd, Ir) nanocatalyst modified GCE 64 2.2.4. Apparatus and measurements 64 2.3. Results and discussion 66 2.3.1. Physicochemical characterization of bimetallic PtM/MWCNTs nanocatalysts 66 2.3.2. Electrochemical response of different modified electrodes towards H2O2 71 2.3.3. Amperometric Measurement of H2O2 79 2.3.4. Reproducibility, stability and anti-interference activity of the PtPd/MWCNTs sensor 83 2.4. Conclusions 87 Chapter 3. A Thin-Film Model Glucose Biosensor Based on Bimetallic PtPd/MWCNTs nanocatalyst 89 3.1. Introduction 89 3.1.2. Glucose biosensor 89 3.1.3. Application of thin metal film elements in biosensor 91 3.2. Experimental 95 3.2.1. Apparatus and reagents 95 3.2.2. Fabrication of PtPd-MWCNTs/GCE. 97 3.2.3. Fabrication of the thin-film model sensor 98 3.2.4. Enzyme immobilization 99 3.3. Results and discussion 101 3.3.1 Characterization of modified GCE 101 3.3.2. Cyclic voltammograms of glucose solution before and after adding enzyme 102 3.3.2. Amperometric determination of glucose at the thin–film model glucose sensor. 105 3.3.3. Reproducibility and stability of the model glucose sensor 108 3.3.4. Interference studies and for the glucose detection 109 3.4. Conclusions 112 Chapter 4. Dendritic platinum-decorated rod shaped nanogold core–shell structure nanoparticles for nonenzymatic biosensing 113 4.1. Introduction 113 4.2. Experimental 117 4.2.1. Material 117 4.2.2. Synthesis of rod shaped gold nanoparticles 117 4.2.3. Synthesis of Aurod@Pt core–shell structure nanoparticles 118 4.2.4. Synthesis of dendritic Pt nanoparticles 118 4.2.5. Fabrication of Nafion/Aurod/GCE, Nafion/Ptdendrite/GCE, and Nafion/Aurod@Pt/GCE. 119 4.3. Results and discussion 120 4.3.1. Physicochemical characterization of nanoparticles 120 4.3.2. Electrochemical characterization of different modified electrodes 123 4.3.3. Glucose oxidation at different modified electrode 126 4.3.4. Amperometric Measurement of glucose under physiological conditions 131 4.3.5. Reproducibility, stability and anti-interference ability of the Nafion/Aurod@Pt/GCE sensor 134 4.3.6. Effect of chloride ions 137 4.4 Conclusion 140 Chapter 5. Summary 141 Chapter 6. Recommendations for Future Research 143 Reference 145 Supporting Information 161

    1. Tran-Minh C., Biosensors, Chapman and Hall, (1993).
    2. Diamond, D., Principles of chemical and biological sensors, Chemical Analysis Vol. 150, John Wiley and Sons, Inc., New York, (1998).
    3. Turner, A. P. F., Karube, I., Wilson, G. S., Biosensors: Fundamentals and Applications, Oxford university press, Oxford, (1987).
    4. Clark, L. C., Jr. Monitor and control of blood and tissue oxygen tensions, Trans. Am. Soc. Artif. Int. Organs, 2, 41-46 (1956).
    5. Clark, L. C., Jr. and Lyons, C., Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci., 102, 29-45 (1962).
    6. Castillo, J., Gaspar, S., Leth, S., Nicukescu, M., Mortari, A., Bontidean, I., Soukharev, V., Dorneanu, S. A., Ryabov, A. D., and Csoregi, E., Biosensors for life quality-Design, development and applications, Sensors and Actuators B: Chemical, 102, 179-194 (2004).
    7. Shen, J., Development and characterization of thick-film printed electrochemical biosensors, Doctoral dissertation, Case Western Reserve University, Cleveland, (2007).
    8. Miscoria, A. S., Barrera, D. G., Rivas, G. A., Glucose biosensors based on the immobilization of glucose oxidase and polytyramine on rhodinized glassy carbon and screen printed electrodes, Sensors and Actuators B-Chemical, 115, 205-211 (2006).
    9. Andreescu, S. and Sadik, O. A., Trends and challenges in biochemical sensors for clinical and environmental monitoring, Pure and Applied Chemistry, 76, 861-878 (2004).
    10. Lu, B. W., Chen, W. C., A disposable glucose biosensor based on drop-coating of screen printed carbon electrodes with magnetic nanoparticles, Journal of magnetism and magnetic materials, 304, 400-402 (2007).
    11. Yabuki, S., Mizutan, F., Preparation of amperometric glucose sensor based on electrochemically polymerized films of indole derivatives, Sensors and actuators B: Chemical, 108, 651-653 (2005).
    12. Zhao, Z. W., Chen. X. J., Tay, B. K., Chen, J. Z., Han, Z. J., Khor, K. A., A novel amperometric biosensor based on ZnO:Co nanoclusters for biosensing glucose, Biosensors and bioelectronics, 23, 135-139 (2007).
    13. Yang, H., Zhu, Y., Glucose biosensor based on nano-SiO2 and “umprotected” Pt nanoclusters, Biosensors and bioelectronics, 22, 2989-2993 (2007).
    14. Shan, D., Zhu, M., Xue, H., Cosnier, S., Development of amperometric biosensor for glucose based on a novel attractive enzyme immobilization matrix: Calcium carbonate nanoparticles, Biosensors and bioelectronics, 22, 1612-1617 (2007).
    15. Zou, Y., Xiang, C., Sun, L., Xu, F., Amperometric glucose biosensor prepared with biocompatible material and carbon nanoube by layer-by-layer self-assembly technique, Electrochimica acta, 53, 4089-4095 (2008).
    16. Jiang, L., Liu, H., Liu, J., Yang, Q., Cai, X., A sensitive biosensor based in Os-complex mediator and glucose oxidase for low concentration glucose determination, Journal of Electroanalytical Chemistry, (2008).
    17. Cano, M., Avila, J. L., Mayen, M., Mena, M. L., Pingarron, J., Rodriguez-Amaro, R., A new, third generation, PVC/TTF-TCNQ composite amperometric biosensor for glucose determination. Journal of Electroanalytical Chemistry, 615, 69-74 (2008).
    18. Zhang, Y., Wen, G., Zhou, Y., Shuang, S., Dong, C., Choi, M. M. F., Development and analytical application of an uric acid biosensor using an uricase-immobilized eggshell membrane, Biosensors and bioelectronics, 22, 1791-1797 (2008).
    19. Luo, Y. C., Do, J. S., Liu, C. C., An amperometric uric acid biosensor based on modified Ir-C electrode, Biosensors and bioelectronics, 22, 482-488 (2006).
    20. Zhang, F., Li, C., Li, X., Wang, X., Wan, Q., Xian, Y., Jin, L., Yamamoto, K., ZnS quantum dots derived a reagentless uric acid biosensor, Talanta, 68, 1353-1358 (2006).
    21. Zhang, F., Li, C., Li, X., Wang, X., Wan, Q., Xian, Y., Jin, L., Yamamoto, K., Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor, Analytica chimica acta, 519, 155-160 (2004).
    22. Barhoumi, H., Maaref, A., Rammah, M., Martelet, C., Jaffrezic, N., Mousty, C., Vial, S., Forano, C., Urea biosensor based on ZN3Al-Urease layered double hydroxides nanohybrid coated on insulated silicon structures, Materials science and engineering: C, 26, 328-333 (2006).
    23. Bisht, R. V., Takashima, W., Kaneto, K., A novel thin film urea biosensor based on copolymer poly(N-3-aminopropylpyrolle-co-pyrolle) film, Surface and coatings technology, 198, 231-236 (2005).
    24. Rajesh, Bisht, V., Takashima, W., Kaneto, K., An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropylpyrolle-co-pyrolle) film, Biomaterials, 26, 3683-3690 (2005).
    25. Vostiar, I., Tkac, J., Sturdik, E., Gemeiner, P., Amperometric urea biosensor based on urease and electropolymerized toluidine blue dye as a pH-sensitive redox probe, Bioelectrochemistry, 56, 113-115 (2002).
    26. Shumyantseva, V., Deluca, G., Bulko, T., Carrara, S., Nicolini, C., Usanov, S. A., Archakov, A., Cholesterol amperometric biosensor based on cytochrome P450scc, Biosensors and bioelectronics, 19, 971-976 (2004).
    27. Parra, A., Casero, E., Pariente, F., Vasquez, L., Lorenzo, E., Cholesterol oxidase modified gold electrodes as bioanalytical devices, Sensors and actuators B : Chemical, 124, 30-37 (2007).
    28. Singh, S., Singhal, R., Malhotra, B. D., Immobilization of cholesterol esterase and cholesterol oxidase onto sol-gel films for application to cholesterol biosensor, Analytica chimica acta, 582, 335-343 (2007).
    29. Bongiovanni, C., Ferri, T., Poscia, A., Varalli, M., Santucci, R., Desideri, A., An electrochemical multienzymatic biosensor for determination of cholesterol. Bioelectrochemistry, 54, 17-22 (2001).
    30. Parra, A., Casero, E., Pariente, V. F., Lorenzo, E., Design and characterization of a lactate biosensor based on immobilized lactate oxidase onto gold surfaces, Analytica chimica acta, 555, 308-315 (2006).
    31. Tsai, Y. C., Chen, S. Y., Liaw, H. W., Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors, Sensors and actuators B: Chemical, 125, 474-481 (2007).
    32. Pereira, C. A., Aguiar, M. R., Kisner, A., Macedo, D. V., Kubota, L. T., Amperometric biosensor for lactate based on lactate dehydrogenase and meldola blue coimmobilized on multi-wall carbon nanotube, Sensors and actuators B: Chemical, 124, 269-276 (2007).
    33. Berberich, J. A., Yang, Lee, W. Y., Madura, J., Bahar, I., Russell, A. J., A stable three-enzyme creatinine biosensor. 1. Impact of structure, function and environment on PEGylated and immobilized sarcosine oxidase, Acta biomaterialia, 1, 173-181 (2005).
    34. Stefan, R. I., Bokretsion, R. G., Staden, J. F., Aboul-Enein, H. Y., Simultaneous determination of creatine and creatinine using amperometric biosensors, Talanta, 60, 1223-1228 (2003).
    35. Tombach, B., Schneider, J., Matzkies, F., Schaefer, R. M., Chemnitius, G. C., Amperometric creatinine biosensor for hemodialysis patients, Clinica chimica acta, 312, 129-134 (2001).
    36. Castillo, J., Gaspar, S., Leth, S., Niculescu, M., Mortari, A., Bontidean, I., Soukharev, V., Dorneanu, S.A., Ryabov, A.D., and Csoregi, E., Biosensors for life quality: Design, development, and applications, Sensors and actuators B: Chemical, 102, 179-194 (2004).
    37. Terry, L.A., White, S.F., and Tigwell, L.J., The application of biosensors to fresh produce and the wider food industry, Journal of agricultural and food chemistry, 53, 1309-1316 (2005).
    38. Inaba, Y., Tokishita, S., Hamada-Sato, N., Kobayashi, T., Imada, C., Yamagata, H., and Watanabe, E., Development of agmatine sensor using the combination of putrescine oxidase and agmatinase for squid freshness, Biosensors and bioelectronics, 20, 833-840 (2004).
    39. Yano, Y., Yokoyama, K., Tamiya, E., and Karube, I., Direct evaluation of meat spoilage and the progress of aging using biosensors, Analytica chimica acta, 320, 269-276 (1996).
    40. Hayashi, K., Okugawa, T., Kozuka, Y., Sasaki, S., Ikebukuro, K., and Karube, I., Novel measurement of hypoxanthine in fish using direct measurement probe and chemiluminescence flow injection analysis, Journal of food science, 61, 736-740 (1996).
    41. Ramirez, G. V., Fournier, D., Silva, M. T. R., Marty, J. L., Sensitive amperometric biosensor for dichlorovos quantification: Application to detection of residues on apple skin, Talanta, 74, 741-746 (2008).
    42. Verma, N., Singh, M., A disposable microbial based biosensor for quality control in milk, Biosensors and bioelectronics, 18, 1219-1224 (2003).
    43. Ruiz, J. G., Lomillo, M. A. A., Munoz, F. J., Screen-printed biosensors for glucose determination in grape juice, Biosensors and bioelectronics, 22, 1517-1521 (2007).
    44. Rodriguez-Mozaz, S., Maria-Pilar, M., Maria J.L., Barcelo, D., Biosensors for environmental applications: Future development trends, Pure applied chemistry, 76, 723–752 (2004).
    45. D’ Souza, S. F., Microbial biosensors, Biosensors and bioelectronics, 16, 337-353 (2001).
    46. Rodriguez-Mozaz, S., Marco, M. P., De Alda, M. J. L., Barcelo, D., Biosensors for environmental monitoring of endocrine disruptors: a review article, Analytical and Bioanalytical Chemistry, 378, 588-598 (2004).
    47. Mallat, M., Barzen, C., Abuknesha, R., Gauglitz, G., Barcelo, D., Part per trillion level determination of isoproturon in certified and estuarine water samples with a direct optical immunosesnor, Analytical Chemica Acta, 426, 209-216 (2001).
    48. Mallat, M., Barzen, C., Abuknesha, R., Gauglitz, G., Barcelo, D., Fast determination of paraquat residues in water by an optical immunosensor and validation using capillary electrophoresis-ultraviolet detection, Analytical Chemica Acta, 426, 165-171 (2001).
    49. Rodriguez-Mozaz, S., Reder, S., de Alda, M. L., Gauglitz, G., Barcelo, D., Simultaneous multi-analyte determination of estrone, isoproturon and atrazine in natural waters by the River ANAlyser (RIANA), an optical immunosensor, Biosensors and Bioelectronics, 19, 633-640 (2004).
    50. Petanen, T. and Romantschuk, M., Use of bioluminescent bacterial sensors as an alternative method for measuring heavy metals in soil extracts, Analytical Chemica Acta 456, 55-61 (2002).
    51. Paddle, B.M., Biosensors for chemical and biological agents of defence interest, Biosensors and Bioelectronics, 11, 1079-1113 (1996).
    52. Lei, Y., Mulchandani, P., Chen, W., Wang, J., and Mulchandani, A., Whole cell-enzyme hybrid amperometric biosensor for direct determination of organophoporous nerve agents with p-nitrophenyl substituent, Biotechnology and bioengineering, 85, 706-713 (2004).
    53. Naimushin, A.N., Soelberg, S.D., Nguyen, D.K., Dunlap, L., Bartholomew, D., Elkind, J., Melendez, J., and Furlong, C.E., Detection of Staphylococcus aureus enterotoxins B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor, Biosensors and Bioelectronics, 17, 573-584 (2002).
    54. Poernomo, T., Fabrication of a disposable glucose biosensor on screen-printed carbon electrodes, Master Thesis, National Taiwan University of Science and Technology, Taipei, (2008).
    55. Mohanty, S. P., Biosensors: A survey report, University of South Florida, USA, (2001).
    56. Kissinger, P. T., Introduction to amperometric biosensors configurations, Current separations, 16, (1997).
    57. Bard, A.J., Faulkner, L.R., Electrochemical methods: Fundamentals and applications, New York: John Wiley & Sons, 2nd Edition, (2000).
    58. Chaubey, A., and Malhotra, B.D., Mediated biosensors, Biosensors and Bioelectronics, 17, 441-456 (2002).
    59. Ruiz, J. G., Lomillo, M. A. A., Munoz, F. J., Screen-printed biosensors for glucose determination in grape juice, Biosensors and Bioelectronics, 22, 1517-1521 (2007).
    60. http://www.gatewaycoalition.org/files/Hidden/sensr/ch4/4_3_3f.htm, accessed at may (2008).
    61. Eggins, B.R., Chemical sensors and biosensors, John Wiley and Sons, Ltd., West Sussex, 2002
    62. Bergveld, P. Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements, Biomedical engineering, 70, 70-71 (1970).
    63. Wroblewski, W., Field effect transistors (FETs) as transducers in electrochemical sensors, Warsaw University of Technology, 1996
    64. Chen, J. C., Chou, J. C., Sun, T. P., Hsiung, S. K., Portable urea biosensor based on the extended- gate field effect transistor, Sensors and actuators B : Chemical, 91, 180-186 (2003).
    65. Kim. D. S., Park, J. E., Shin, J. K., Kim, P. K., Lim, G., Shoji, S., An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes, Sensors and actuators B : Chemical, 117, 488-494 (2006).
    66. Rich, R. L., Myszka, D. G., Survey of the year 2006 commercial optical biosensor literature, Journal of molecular recognition, 20, 300-366 (2007).
    67. Laschi, S., and Mascini, M., Planar electrochemical sensors for biomedical applications, Medical Engineering and Physics, 28, 934-943 (2006).
    68. Mohanty, S. P., Biosensors: A survey report, University of South Florida, USA, (2001).
    69. Tsiafoulis, C. G., Trikalitis P. N., and M. I. Prodromidis, Synthesis, characterization and performance of vanadium hexacyanoferrate as electrocatalyst of H2O2, Electrochemistry Communication, 7, 1398–1404 (2005).
    70. Geiszt, M., and Leto, T. L., The Nox family of NAD(P)H oxidases: Host defense and beyond, The Journal of Biological Chemistry, 279, 51715–51718 (2004).
    71. Giorgio, M., Trinei, M., Migliaccio, E., Pelicci, P. G., Hydrogen peroxide: A metabolic by-product or a common mediator of ageing signals, Nature Reviews Molecular Cell Biology, 8, 722–728 (2007).
    72. Laloi, C., Apel, K., Danon, A., Reactive oxygen signalling: The latest news, Current Opinion in Plant Biology, 7, 323–328 (2004).
    73. He, F., Tang, Y., Yu, M., Wang, S., Li, Y., Zhu, D., Fluorescence-Amplifying Detection of Hydrogen Peroxide with Cationic Conjugated Polymers, and Its Application to Glucose Sensing, Advanced Functional Materials, 16, 91–94 (2006).
    74. Wang, J., Electrochemical biosensors: Towards point-of-care cancer diagnostics, Biosensors and Bioelectronics, 21, 1887–1892 (2006).
    75. Dean J. T., Narayan V. K. M., Ping Zhang, Alka M. K., Desmond E. W., Michael M. E., Giussepina I., Ambady R., Disease control priorities in developing countries, Oxford, 591-603 (2006).
    76. Newman, J.D., and Turner, A.P.F., Home blood glucose biosensors: A commercial perspective, Biosensors and Bioelectronics, 20, 2435-3453 (2005).
    77. American diabetes association (ADA), Self-monitoring of blood glucose, Diabetes care, 17, 81-86 (1994).
    78. Wild, S., Roglic, G., Green, A., Sicree, R., and King, H., Global prevalence of diabetes: estimates for the year 2000 and projections for 2030, Diabetes care, 27, 1047-1053 (2004).
    79. Gosali, B., Behavior of chitosan oligosaccharides addition on amperometric glucose biosensor performance, Master Thesis, National Taiwan University of Science and Technology, Taipei, (2008).
    80. King, H., Aubert, R.E., and Herman, W.H., Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections, Diabetes care, 21, 1414-1431 (1998).
    81. Wei, J.N., Chuang, L,M., Lin, R.S., Chao, C.L., and Sung, F.C., Prevalence and hospitalization rates of diabetes mellitus in Taiwan, 1996-2000, Taiwan journal of public health, 21, 173-180 (2002).
    82. Clark, L. C., Lyons, C., Electrode systems for continuous monitoring in cardiovascular surgery, Annals of the New York academy of sciences, 102, 29-45 (1962).
    83. Heineman, W. R., Obituary “Leland. C. Clark”, Biosensors and Bioelectronics, 21, 1403-1404 (2006).
    84. Clark, L. C., Membrane polarographic electrode system and method with electrochemical compensation, US patent 3,539,455, (1970).
    85. Updike, S. J., Hicks, G. P., The enzyme electrode, Nature, 214, 986-988 (1967).
    86. Guibault, G. G., Lubrano, G. J., An enzyme electrode for the amperometric determination of glucose, Analytica chimica acta, 64, 439-455 (1973).
    87. Wang, J., Glucose biosensors: 40 years of advanced and challenges, Electroanalysis, 13, 983-988 (2001).
    88. Castillo, J., Gaspar, S., Leth, S., Niculescu, M., Mortari, A., Bontidean, I., Soukharev, V., Dorneanu, S.A., Ryabov, A.D., and Csoregi, E., Biosensors for life quality: Design, development, and applications, Sensors and actuators B, 102, 179-194 (2004).
    89. Gorton, L., Lindgren, A., Larsson, T., Munteanu, F.D., Ruzgas, T., and Gazaryan, I., Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors, Analytica chimica acta, 400, 91-108 (1999).
    90. Heller, A., Electrical connection of enzyme redox centers to electrodes, The Journal of physical chemistry, 96, 3579-3587 (1992).
    91. Degani, Y., and Heller, A., Direct electrical communication between chemically modified enzymes and metal: 1. Electron transfer from Glucose Oxidase to metal electrodes via electron relays, bound covalently to the enzyme, The Journal of physical chemistry, 91, 1285-1289 (1996).
    92. Willner, I., Heleg-Shabtai, V., Blonder, R., Katz, E., Tao, G., Buckmann, A.F., and Heller, A., Electrical wiring of Glucose Oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes, Journal of the american chemical society, 118, 10321-10322 (1996).
    93. Loeb, W., Biochem. Z. 17 132-144 (1909).
    94. Wroblowa, H., Piersma, B. J., Bockris, J. O., Studies of the mechanism of the anodic oxidation of ethylene in acid and alkaline media. Journal of Electroanalytical Chemistry. 6, 401-416 (1963).
    95. Bockris, J. O., Piersma, B. J., Gileadi, E., Anodic oxidation of cellulose and lower carbohydrates, Electrochim. Acta, 9, 1329-1332 (1964).
    96. Kathryn, E. T., Richard, G. C., Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation, International Journal of electrochemical science, 5, 1246-1301, (2010).
    97. Ernst, S., Hamann, C.H., Heitbaum, J., Electrooxidation of glucose in phosphate buffer solution: Kinetics and reaction mechanism, Berichte der Bunsengesellschaft/Physical Chemistry Chemical Physics, 84, 50-55 (1980).
    98. Xonoglou, N., Kokkinidis, G., Catalysis of the oxidation of monosaccharides on platinum surfaces modified by underpotential submonolayers, Bioelectrochemistry and Bioenergetics, 12, 485-498, (1984).
    99. Yao, S.J., Appleby, A.J., Geisel, A., Cash, H.R., Wolfson Jr., S.K., Anodic Oxidation of Carbohydrates and their Derivatives in Neutral Saline Solution, Nature, 224, 921-922 (1969).
    100. Skou, E., The electrochemical oxidation of glucose on platinum-I. The oxidation in 1 M H2SO4, Electrochimica Acta, 22, 313-318, (1977).
    101. Sakamoto, M., Takamura, K., Catalytic oxidation of biological components on platinum electrodes modified by adsorbed metals. Anodic oxidation of glucose, Bioelectrochemistry and Bioenergetics, 9, 571-582, (1982).
    102. Largeaud, F., Kokoh, K.B., Beden, B., Lamy, C., On the electrochemical reactivity of anomers: electrocatalytic oxidation of α- and β-d-glucose on platinum electrodes in acid and basic media, Journal of Electroanalytical Chemistry, 397, 261-269, (1995).
    103. Ernst, S., Heitbaum, J., Hamann, C.H., The electrooxidation of glucose in phosphate buffer solutions. Part I. Reactivity and kinetics below 350 mV/RHE, Journal of Electroanalytical Chemistry, 100, 173-183, (1979).
    104. Tao, F., Grass, M. E., Zhang, Y., Butcher, D, R., Renzas, J. R., Liu, Z., Chung, J. Y., Mun, B. S., Salmeron, M., Somorjai, G. A., Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles, Science, 322, 932-934, (2008).
    105. Lim, B., Jiang, M., Camargo, P. H.C., Cho, E. C., Tao, J., Lu, X., Zhu, Y., Xia, Y., Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction, Science, 324, 1302-1305, (2009).
    106. Chang, S. H., Su, W. N., Yeh, M. H., Pan, C. J., Yu, K. L., Liu, D. G., Lee, J. F., Hwang, B. J., Structural and electronic effects of carbon-Supported Ptx-Pd1-x nanoparticles on the electrocatalytic activity of the oxygen-reduction reaction and on methanol tolerance, Chemistry - A European Journal 16, 11064–11071, (2010).
    107. Alayoglu, S., Nilekar, A.U., Mavrikakis, M., Eichhorn, B., Ru-Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen, Nature Material. 7, 333-338 (2008).
    108. Wang, J., Musameh, M., Lin, Y., Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors, Journal of the american chemical society 125, 2408–2409 (2003).
    109. Lin, Y. C., Chou, H. L., Tsai, M. C., Hwang, B. J., Sarma, L. S., Lee, Y. C., Chen, C. I., Combined experimental and theoretical investigation of nanosized effects of Pt catalyst on their underlying methanol electrooxidation activity, Journal of Chemical Physics C, 113, 9197–9205 (2009).
    110. Hanaoka, S., Lin, J., Yamada, M., Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin, Analytica Chimica Acta. 426, 57-64 (2001).
    111. He, F., Tang, Y., Yu, M., Wang, Y., Li, Y., Zhu, D., Fluorescence-amplifying detection of hydrogen peroxide with cationic conjugated polymers, and its application to glucose sensing, Advanced Functional Materials. 16, 91-94 (2006).
    112. Hrapovic, S., Liu, Y., Male, B. K., Luong, J. H. T., Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes, Analytical Chemistry, 76, 1083-1088 (2004).
    113. Iijima, S., Helical microtubules of graphitic carbon, Nature. 354, 56-58 (1991).
    114. Wang, J., Carbon-nanotube based electrochemical biosensors: A review Electroanalysis. 17, 7-14 (2005).
    115. Merkoci, A., Carbon nanotubes in analytical sciences, Microchim. Acta. 152, 157-174 (2006).
    116. Gong, K., Yan, Y., Zhang, M., Su, L., Xiong, S., Mao, L., Electrochemistry and electroanalytical applications of carbon nanotubes: A review, Analytical Sciences, 21, 1383-1393 (2005).
    117. Wang, J., Rivas, G., Chicharro, M., Iridium-Dispersed Carbon Paste Enzyme Electrodes, Electroanalysis. 8, 434-451 (1996).
    118. Wang, J., Liu, J., Chen, L., Lu, F., Highly selective membrane-free, mediator-free glucose biosensor, Analytical Chemistry. 66, 3600-3603 (1994).
    119. Ming, L., Xi, X., Liu, J., Electrochemically platinized carbon paste enzyme electrodes: A new design of amperometric glucose biosensors, Biotechnology Letter. 28, 1341-1345 (2006).
    120. Huang, J. S., Wang, D. W., Hou, H. Q., You, T. Y., Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH, Advanced Functional Materials 18, 441-448 (2008).
    121. Guo, S.J., Dong, S.J., Biomolecule-nanoparticle hybrids for electrochemical biosensors, TrAC - Trends in Analytical Chemistry, 28, 96–109 (2009).
    122. Zhang, Y., Sun,Y., Liu, Z., Xu, F., Cui, K., Shi, Y., Wen, Z., Li, Z., Au nanocages for highly sensitive and selective detection of H2O2. Journal of Electroanalytical Chemistry. 656, 23-28 (2011).
    123. Watanabe, M., Uchida, M., Motoo, S., Preparation of highly dispersed Pt+Ru alloy clusters and the activity for the electrooxidation of methanol, Journal of Electroanalytical Chemistry. 229, 395-406 (1987).
    124. Hwang, B.J., Chen, C.H., Sarma, L.S., Chen, J.M., Wang, G.R., Tang, M.T., Liu, D.G., Lee, J.F., Probing the formation mechanism and chemical states of carbon-supported Pt−Ru nanoparticles by in situ X-ray absorption spectroscopy, Journal of Chemical Physics B, 110, 6475-6482 (2006).
    125. Hwang, B.J., Kumar, S.M.S., Chen, C.H., Chang, R.W., Liu, D. G., Lee, J.F., An Investigation of Structure-Catalytic Activity Relationship for Pt-Co/C Bimetallic Nanoparticles toward the Oxygen Reduction Reaction, Journal of Chemical Physics B, 112, 2370-2377 (2008).
    126. Lai, F-J., Sarma, L. S., Chou, H-L., Liu, D-G., Hsieh, C-A., Lee, J-F., Hwang, B-J., Architecture of Bimetallic PtxCo1−x Electrocatalysts for Oxygen Reduction Reaction As Investigated by X-ray Absorption Spectroscopy Journal of Chemical Physics C, 113, 12674-12681 (2009).
    127. Allouche, H., Monthioux, M., Chemical vapor deposition of pyrolytic carbon on carbon nanotubes: (II) Texture and Structure. Carbon, 43, 1265-1278 (2005).
    128. Bard, A. J., Faulkner, L. R., Electrochemical Methods, 2nd ed. Wiley-VCH, New York, pp. 241–243 (2001).
    129. Wang, X., Yang, T., Feng, Y., Jiao, K., Li, G., A Novel Hydrogen Peroxide Biosensor Based on the Synergistic Effect of Gold-Platinum Alloy Nanoparticles/Polyaniline Nanotube/Chitosan Nanocomposite Membrane, Electroanalysis 21, 819 – 825 (2009).
    130. Liu, J., Lu, F., Wang, J., Metal-alloy-dispersed carbon-paste enzyme electrodes for amperometric biosensing of glucos, Electrochemistry Communications. 1, 341–344 (1999).
    131. Safavia, A., Farjamia, F., Electrodeposition of gold-platinum alloy nanoparticles on ionic liquid-chitosan composite film and its application in fabricating an amperometric cholesterol biosensor, Biosensors and Bioelectronics. 26, 2547–2552 (2011).
    132. Kang, X., Mai, Z., Zou, X., Cai, P., Mo, J., A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes, Analytical Biochemistry. 369, 71–79 (2007).
    133. Xiao, F., Zhao, F., Mei, D., Mo, Z., Zeng, B., Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M = Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film, Biosensors and Bioelectronics. 24, 3481–3486 (2009).
    134. Kumar, S., Zou, S., Electrooxidation of CO on uniform arrays of Au nanoparticles: Effects of particle size and interparticle spacing, Langmuir, 25, 574–581 (2009).
    135. Karam, P., Halaoui, L.I., Sensing of H2O2 at low surface density assemblies of Pt nanoparticles in polyelectrolyte, Analytical Chemistry. 80, 5441–5448 (2008).
    136. Ji, S., Guo, Q., Yue, Q., Wang, L., Wang, H., Zhao, J., Dong, R., Liu, J., Jia, J., Controlled synthesis of Pt nanoparticles array through electroreduction of cisplatin bound at nucleobases terminated surface and application into H2O2 sensing, Biosensors and Bioelectronics, 26, 2067–2073 (2011).
    137. Liu, Y., Wang, D., Xu, L., Hou, H., You, T., A novel and simple route to prepare a Pt nanoparticle-loaded carbon nanofiber electrode for hydrogen peroxide sensing Biosensors and Bioelectronics. 26, 4585– 4590 (2011).
    138. Mao, L., Yamaomoto, K., Zhou, W., Jin, L., Electrochemical nitric oxide sensors based on electropolymerized film of M(salen) with central ions of Fe, Co, Cu, and Mn, Electroanalysis, 12 (1), 72–77 (2000).
    139. Ravi Shankaran, D., Uehara, N., Kato, T., A metal dispersed sol-gel biocomposite amperometric glucose biosensor, Biosensors and Bioelectronics. 18 (5–6), 721–728 (2003).
    140. Turner, A. P. F., Chen, B., Piletsky, S., In vitro diagnostics in diabetes: Meeting the challenge, Clinical Chemistry, 45, 1596-1601 (1999).
    141. Wickramasinghe, Y., Yang, Y., Spencer, S. A., Current problems and potential techniques in in vivo glucose monitoring, Journal of Fluorescence, 14, 513-520 (2004).
    142. Shah, J., Wilkins, E., Electrochemical biosensor for detection of biological warfare agents, Electroanalysis, 15, 157-167 (2003).
    143. Dong, S. J., Wang, B. X., Liu, B. F., Amperometric glucose sensor with ferrocene as an electron-transfer mediator, Biosensors and Bioelectronics, 7, 215-222 (1992).
    144. Jonsson, G., Gorton, L., Pettersson, L., Mediated electron-transfer from glucose-oxidase at a ferrocene-modified graphite electrode, Electroanalysis, 1, 49-55 (1989).
    145. Tamiya, E., Karube, I., Hattori, S., Suzuki, M., Yokoyama, M., Micro glucose sensors using electron mediators immobilized on a polypyrrole-medified electrode, Sensors and Actuators B-Chemical, 18, 297-307 (1989)
    146. Urban, G., Jobst, G., Aschauer, E., Tilado, O., Svasek, P., Varahram, M., Performance of integrated glucose and lactate thin-film microbiosensor for clinical analyzers, Sensors and Actuators B-Chemical, 18-19, 592-596 (1994).
    147. Jobst, G., Moser, I., Varahram, M., Svasek, P., Aschauer, E., Trajanoski, Z., Wach, P., Kotanko, P., Skrabal, F., Urban, G., Thin-film microbiosenors for glucose-lactate monitoring, Analtical Chemistry, 68, 3173-3179 (1996).
    148. Deepa, P.N., Kanungo, M., Claycomb, G., Sherwood, P.M.A., Collinson, M.M., Electrochemically Deposited Sol-Gel-Derived Silicate Films as a Viable Alternative in Thin-Film Design, Analytical Chemistry, 75,5399-5405 (2003).
    149. Seshan, K., Handbook of Thin-film Deposition Processes and Techniques, Noyes Publications/William Andrew Publishing, Norwich, New York. (2002).
    150. Cheng, A.K.H., Ge, B., Yu, H.-Z., Aptamer-based biosensors for label-free voltammetric detection of lysozyme, Analytical Chemistry, 79, 5158-5164 (2007).
    151. Ferapontova, E.E., Olsen, E.M., Gothelf, K.V., An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum, Journal of the American Chemical Society, 130, 4256-4258 (2008).
    152. Rowe, A.A., Miller, E.A., Plaxco, K.W., Reagentless measurement of aminoglycoside antibiotics in blood serum via an electrochemical, ribonucleic acid aptamer-based biosensor, Analytical Chemistry, 82, 7090-7095 (2010).
    153. Pyun, J.C., Kim, S.D., Chung, J.W., New immobilization method for immunoaffinity biosensors by using thiolated proteins, Analytical Biochemistry, 347, 227-233 (2005).
    154. Fan, C., Plaxco, K.W., Heeger, A.J., Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA, Proceedings of the National Academy of Sciences of the United States of America, 100, 9134-9137 (2003).
    155. Wang, Z., Wilkop, T., Cheng, Q., Characterization of micropatterned lipid membranes on a gold surface by surface plasmon resonance imaging and electrochemical signaling of a pore-forming protein, Langmuir, 21, 10292-10296 (2005).
    156. Kaushik, A., Khan, R., Solanki, P.R., Pandey, P., Alam, J., Ahmad, S., Malhotra, B.D., Iron oxide nanoparticles-chitosan composite based glucose biosensor, Biosensors and Bioelectronics, 64, 678-683 (2008).
    157. Li, F., Li, J., Zhang, S., Molecularly imprinted polymer grafted on polysaccharide microsphere surface by the sol-gel process for protein recognition, Talanta, 74, 1247-1255 (2008).
    158. Li, F., Wang, Z., Chen, W., Zhang, S., A simple strategy for one-step construction of bienzyme biosensor by in-situ formation of biocomposite film through electrodeposition, Biosensors and Bioelectronics, 24, 3030-3035 (2009).
    159. Yi, H., Wu, L. Q., Bentley, W. E., Ghodssi, R., Rubloff, G. W., Culver, J. N., Payne, G. F., Biofabrication with Chitosan, Biomacromolecules, 6, 2882-2894 (2005).
    160. Wilson, R., and Turner, A. P. F., Glucose oxidase: an ideal enzyme, Biosensors and Bioelectronics, 7, 165-185, (1992).
    161. Binyamin, G., Cole, J., Heller, A., Mechanical and electrochemical characteristics of composites of wired glucose oxidase and hydrophilic graphite, Journal of the Electrochemical Society, 147(7), 278-2783 (2000).
    162. Mano, N., Heller, A., Detection of glucose at 2fM concentration, Analytical Chemistry, 77(2), 729-732, (2005).
    163. Katakis, I., Ye Ling, Heller, A., Electrostatic control of the electron transfer enabling binding of recombinant glucose oxidase and redox polyelectrolytes, Journal of the American Chemical Society, 116, 3617-3618, (1994).
    164. Vassilyev, Y.B., Khazova, O.A., Nikolaeva, N.N., Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts. Part I. Adsorption and oxidation on platinum, Journal of Electroanalytical Chemistry, 196, 105–125, (1985).
    165. Li, Y., Song, Y.Y., Yang, C., Xia, X.H., Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose, Electrochemistry Communications. 9, 981–988, (2007).
    166. Luo, P., Zhang, F., Baldwin, R.P., Comparison of metallic electrodes for constant-potential amperometric detection of carbohydrates, amino acids and related compounds in flow systems, Analytica Chimica Acta, 244, 169–178, (1991).
    167. Sun, Y., Buck, H., Mallouk, T.E., Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors, Analytical Chemistry, 73, 1599–1604, (2001)
    168. Aoun, S.B., Bang, G.S., Koga, T., Nonaka, Y., Sotomura, T., Taniguchi, I., Electrocatalytic oxidation of sugars on silver-UPD single crystal gold electrodes in alkaline solutions, Electrochemistry Communications , 5, 317–320 (2003).
    169. Aoun, S.B., Dursun, Z., Koga, T., Bang, G.S., Sotomura, T., Taniguchi, I., Effect of metal ad-layers on Au(1 1 1) electrodes on electrocatalytic oxidation of glucose in an alkaline solution, Journal of Electroanalytical Chemistry, 567, 175–183 (2004).
    170. Irhayem, E.A., Elzanowska, H., Jhas, A.S., Skrzynecka, B., Birss, V., Journal of Electroanalytical Chemistry. 538–539, 153–164. (2002).
    171. Chen, J., Zhang, W.D., Ye, J.S., Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite, Electrochemistry Communications, 10, 1268–1271 (2008).
    172. Zhuang, Z.J., Su, X.D., Yuan, H.Y., Sun, Q., Xiao, D., Choi, M.M.F., An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode, Analyst 133, 126–132 (2008).
    173. Zhu, H., Lu, X. Q., Li, M. X., Shao, Y. H., Zhu, Z. W., Nonenzymatic glucose voltammetric sensor based on gold nanoparticles/carbon nanotubes/ionic liquid nanocomposite, Talanta, 79, 1446-1453 (2009).
    174. Celej, M. S., Rivas, G., Amperometric Glucose Biosensor Based on Gold-Dispersed Carbon Paste, Electroanalysis, 10, 771-775 (1998).
    175. Baea, E. Y. I. T., Xing, X., Liu, C. C., In situ infrared studies of glucose oxidation on platinum in an alkaline medium, Journal of Electroanalytical Chemistry, 309, 131- (1991).
    176. Ming,T., Feng, W., Tang, Q., Wang, F., Sun, L., Wang, J., Yan, C., Growth of Tetrahexahedral Gold Nanocrystals with High-Index Facets, Journal of the American Chemical Society, 131, 16350-16351 (2009).
    177. Kim, Y., Hong, J. W., Lee, Y. W., Kim, M., Kim, D., Yun, W. S., Han, S. W., Synthesis of AuPt Heteronanostructures with Enhanced Electrocatalytic Activity toward Oxygen Reduction, Angewandte Chemie International Edition. 49, 10197-10201 (2010).
    178. Lee, Y. W., Kim, M., Kim, Z. H., Han, S. W., One-step Synthesis of Au@Pd core-shell Nanooctahedron, Journal of the American Chemical Society, 131, 17036-17037 (2009).

    無法下載圖示 全文公開日期 2017/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE