簡易檢索 / 詳目顯示

研究生: 曾爾凡
Irving - Tseng
論文名稱: 小型化的平面電路至金屬波導之轉接與極化器
Miniaturized Planar Transmission Line to Metallic Waveguide Transition and Polarizer
指導教授: 王蒼容
Chun-Long Wang
口試委員: 陳士元
Shih-Yuan Chen
楊成發
Chang-Fa Yang
廖文照
Wen-Jiao Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 145
中文關鍵詞: 小型化平面電路金屬波導轉接極化器
外文關鍵詞: Compact, Planar circuit, Metallic waveguide, Transition, Polarizer
相關次數: 點閱:268下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出兩個小型化的微波電路元件,第一個微波元件為利用電感補償相移器之共平面波導至矩形金屬波導的轉接器,第二個微波元件為利用截角補丁天線之圓型金屬波導極化器。
在第二章中,我們首先設計一個利用180度相移器之共平面波導至矩形波導轉接電路,此電路小於-15 dB反射系數操作頻寬為8.05 GHz ~12.18 GHz,比例頻寬38.8%,幾乎涵蓋整個X-band。進一步的,我們使用電感補償之技術將180度相移器的尺寸更加縮小,總電路尺寸達5.9×10.16×0.8 mm3,同時15 dB反射系數操作頻寬提升為8.05 GHz ~12.38 GHz。為了驗證模擬結果,利用電感補償相移器之共平面波導至矩形金屬波導的轉接器被背對背的連接起來且量測,量測的數據與模擬有良好一致性。

在第三章中,我們首先提出一個利用矩形補丁實現之微帶線至圓形金屬波導轉接,此轉接非常的小,因為矩形補丁僅放在距離圓型波導短路面2.68 mm處。接著我們提出一個利用截角補丁天線之圓型金屬波導極化器,此極化器在9.65 GHz時軸比為0.002 dB、相差達到-90.97度,且在9.65 GHz附近反射係數皆小於-20 dB。此外,我們提出的極化器不需要在金屬波導上做複雜的加工,並且使用微帶線饋入使得此極化器更容易與其他的平面電路結合。為了驗證模擬結果,圓形波導的末端被打開且量測,量測與模擬的結果得到良好一致性。


In this discourse, two compact microwave components are proposed, which include the compact and broadband CPW-to-RWG transition using the inductance compensated phase shifter and the compact microstrip-fed CWG polarizer using the corner-truncated patch. The characteristics of each of them are described below.

In chapter 2, firstly, a CPW-to-RWG transition using the half-wavelength phase shifter is introduced. The transition has a broadband response in which the frequency range of the -15-dB reflection coefficient covers from 8.05 GHz to 12.18 GHz (FBW = 38.8%), almost encompassing the whole X-band (8.2-12.4 GHz). In order to reduce the size of the transition, the inductance-compensated phase shifter is used to replace the half-wavelength phase shifter, resulting in a compact and broadband CPW-to-RWG transition using the inductance-compensated phase shifter. The size of transition is 5.9×10.16×0.8 mm3 and the frequency range, for which the reflection coefficient is smaller than -15 dB, covers from 8.05 GHz to 12.38 GHz, estimating to be 42.04%. In order to verify the simulation results, two CPW-to-RWG transitions using the inductance-compensated phase shifter are back-to-back connected, fabricated, and measured. The measurement and simulation results are in reasonable agreement, which verifies our design.
In chapter 3, firstly, a MSL-to-CWG transition using the rectangular patch is introduced. The rectangular patch is placed 2.68 mm (0.043 λg) away from the short-circuited plane of the CWG port, making the transition very compact. Secondly, a MSL-fed CWG polarizer using the corner-truncated patch is proposed. The proposed polarizer has an axial ratio of 0.002 dB and a phase difference of -90.97° at 9.65 GHz. The reflection coefficient is below -20 dB around the center frequency 9.65 GHz. In additional, the proposed polarizer needs no complex manufacturing process on the waveguide. Moreover, since the polarizer is fed by the microstrip line, it would be easy to integrate with other planar circuits. In order to verify the simulation results, the CWG port of the MSL-fed CWG polarizer using the corner-truncated patch is opened, simulated and measured. The simulation and measurement results are in good agreement.

摘要 i Abstract ii Contents iv List of Tables xviii Chapter 1 Introduction 1 1.1 Motivation and Objective 1 1.2. Literatures Survey 3 1.2.1 CPW-to-RWG Transition 3 1.2.2 Waveguide Polarizer 9 1.3 Contribution 14 Chapter 2 Compact and Broadband CPW-to-RWG Transition Using Inductance-Compensated Phase Shifter 16 2.1 CPW-to-RWG Transition Using Half-Wavelength Phase Shifter 17 2.1.1.1 Transition Topology 17 2.1.2 Transition Design and Analasis. 20 2.2 Compact and Broadband CPW-to-RWG Transition Using Inductance Compensated Phase Shifter 39 2.2.1 Topology Description. 39 2.2.2 Inductance-Compensated Phase Shifter. 43 2.2.3 Verification 53 2.3 Summary 56 Chapter 3 Compact Microstrip-Fed CWG Polarizer Using Corner-Truncated Patch 57 3.1 Microstrip-to-CWG Transition Using Rectangular Patch 58 3.1.1 Transition Topology 58 3.1.2 Design and Analysis of Transition 63 3.2 Microstrip-Fed CWG Polarizer Using Corner-Truncated Patch 67 3.2.1 Polarizer Topology 67 3.2.2 Design and Analysis of Polarizer 70 3.3 Verification 86 3.4 Summary 100 Chapter 4 Conclusions 102 References 104 Appendix A Simulation and Measurement Results of the CPW-to-RWG Transition using the Half-Wavelength Phase Shifter 106 Appendix B Influence of the Truncated Corner on the CPW-to-RWG Transition Using the Inductance-Compensated Phase Shifter 109 Appendix C Phase Delays of the CPW-to-RWG Transitions 111 Appendix D Simulation and Measurement Results of the CPW-to-RWG Transition Using the Inductance-Compensated Phase Shifter 113 Appendix E Measurement Results of the Original Microstrip-Fed CWG Polarizer Using the Corner-Truncated Patch 116 Appendix F Measurement Results of the Optimized Microstrip-Fed CWG Polarizer Using the Corner-Truncated Patch 119 Appendix G Comparison Table for the CPW-to-RWG Transitions 122 Appendix H Comparison Table for the Microstrip-fed CWG Polarizers 123

[1] G. E. Ponchak and R. N. Simons, “A new rectangular waveguide to coplanar
waveguide transition,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., vol. 1.
Dallas, USA, May 1990, pp. 491–492.
[2] V. S. Möttönen, “Wideband coplanar waveguide-to-rectangular waveguide
transition using fin-line taper,” IEEE Microw. Wireless Compon. Lett., vol. 15,
no. 2, pp. 119–121, Feb. 2005.
[3] C.-F. Hung, A.-S. Liu, C.-H. Chien, C.-L. Wang, and R.-B. Wu, “Bandwidth
enhancement on waveguide transition to conductor backed CPW with high
dielectric constant substrate,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 128–130, Feb. 2005.
[4] T.-H. Lin and R.-B. Wu, “CPW to waveguide transition with tapered slotline
probe,” IEEE Microw. Wireless Compon. Lett., vol. 11, no. 7, pp. 314–316, Jul. 2001.
[5] V. S. Möttönen and A. V. Räisänen, “Novel wide-band coplanar
waveguide-to-rectangular waveguide transition,” IEEE Trans. Microw. Theory
Tech., vol. 52, no. 8, pp. 1836–1842, Aug. 2004.
[6] R.-Y. Fang and C.-L. Wang, "Miniaturized Microstrip-to-Waveguide Transition Using Capacitance-Compensated Broadside-Coupled Microstrip Line," IEEE Trans. Compon. Packag. Manuf. Technol., vol. 2, no. 10, pp. 1666-1671, Oct. 2012.
[7] R.-Y. Fang, C.-T. Wang, and C.-L. Wang, “A direct CPW-to-rectangular
waveguide transition using a dipole slot antenna,” in Proc. 39th Eur. Microw.
Conf., Rome, Italy, Sep. 2009, pp. 157–160.
[8] N. Yoneda and M. Miyazaki, "A Design of Novel Grooved Circular Waveguide Polarizers," IEEE Trans. Microw. Theory Techn., vol. 42, pp. 2446-2452, Dec. 2000.
[9] G. Virone, R. Tascone, O. A. Peverini, and R. Orta, "Optimum-Iris-Set Concept for Waveguide Polarizers," IEEE Microw. Compon. Lett., vol. 17, pp. 202-204, Mar. 2007.
[10] G. Bertin, B. Piovano, L. Accatino, and Mauro Mongiardo, "Full-Wave Design and Optimization of Circular Waveguide Polarizers With Elliptical Irises," IEEE Trans. Microw. Theory Techn., vol. 50, 2002.
[11] N. C. ALBERTSEN and P. SKOV-MADSEN, "A Compact Septum Polarizer," IEEE Trans. Microw. Theory Techn., vol. 31, pp. 654-660, Aug. 1983.
[12] R. B. P. Brachat, "Compact Duplexer-Polarizer with Semicircular Waveguide," IEEE Trans. Antennas Propag., vol. 39, pp. 1222-1224, Aug. 1991.
[13] T. EGE and P. McANDREW, "Analysis of Stepped Septum Polarizer," ELECTRONICS LETTERS, vol. 21, pp. 1166-1168, Nov. 1985.
[14]] S.-W. Wang, C.-H. Chien, C.-L. Wang, and R.-B. Wu, "A Circular Polarizer Designed With a Dielectric Septum Loading," IEEE Trans. Microw. Theory Techn., vol. 52, pp. 1719-1723, Jul. 2004.
[15] B. Subbarao and V. F. Fusco, "Compact Coaxial-Fed CP Polarizer," IEEE Antennas Wireless Propag. Lett., vol. 3, pp. 145-147, 2004.
[16] K. J. Jeon, K. J. Lee, T. K. Lee, J. W. Lee, and W. K. Lee, "Circular Polarization Generating Coaxial to Waveguide Adapter for Horn Antenna," presented at the Antennas and Propagation (EuCAP), 2010 Proceedings of the Fourth European Conference on, Barcelona, Spain, 2010.
[17] D. M. Pozar, Microwave Engineering. 3rd ed. New York: Wiley, 2005.
[18] W. L.Stutzman and G. A. Thiele, Antenna Theory and Design, 2 ed. United States of America: Wiley, 1998.

QR CODE