簡易檢索 / 詳目顯示

研究生: 潘家頎
Chia-Chi Pan
論文名稱: 銅基與銀基底黃銅礦結構半導體之單晶成長與特性研究
Growth and characterization of Cu- and Ag-based I-III-VI2 chalcopyrite crystals
指導教授: 何清華
Ching-Hwa Ho
口試委員: 黃鶯聲
Ying-Sheng Huang
陳瑞山
Ruei-San Chen
趙良君
Liang -Chiun Chao 
李奎毅
Kuei-Yi Lee
郭東昊
Dong-Hau Kuo
薛人愷
Ren-kae Shiue
程光蛟
Kwong-Kau Tiong
林泰源
Tai-Yuan Lin
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 168
中文關鍵詞: 極化熱調製光譜價帶分裂熱調製光譜黃銅礦結構
外文關鍵詞: valence-band splitting, polarized-thermoreflectance, thermoreflectance, chalcopyrite
相關次數: 點閱:308下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究論文主利用化學氣相傳導法以三氯化碘當傳導劑來成長Cu(In1-xAlx)S2、CuAl(S1-xSex)2、Ag(In1-xAlx)S2系列以及AgIn5S8半導體晶體,針對此系列晶體藉由光學特性量測方式進行研究與探討。銅及銀為基底的Cu(In1-xAlx)S2、CuAl(S1-xSex)2與Ag(AlxIn1-x)S2系列硫化合物是多種寬能隙範圍的直接能隙半導體,其屬於黃銅礦結構,但欲成長AgInS2晶體(四方體結構)則易形成AgIn5S8(立方尖晶石結構)單晶晶體。
    從外觀上銅基及銀基黃銅礦化合物Cu(In1-xAlx)S2、CuAl(S1-xSex)2與Ag(In1-xAlx)S2呈現明顯(112)面並且擁有針狀的形貌,以銅為基底的黃銅礦化合物Cu(In1-xAlx)S2覆蓋光譜範圍相當廣從1.5 eV到3.5 eV,具有峰值的吸收響應從近紅外光(NIR)到紫外光(UV)區,可應用於類似之疊層串接式的太陽能電池之吸收層,也可藉由變化硒與硫元素CuAl(S1-xSex)2由紫外光延伸至紅光範圍,可以有效發揮在可見光範圍內的光電轉換應用。此外在真空環境下以銀為基底的黃銅礦化合物Ag(In1-xAlx)S2中,AgAlS2呈現白色透明的顏色,隨添加少許銦元素,Ag(In0.2Al0.8)S2呈現淡黃色透明,其它成份則略偏紅色,高鋁成份的Ag(In1-xAlx)S2化合物在溼氣(大氣)的環境下易與水氣反應,AgAlS2與水氣反應表面迅速呈現棕黑色,而且Ag(In0.2Al0.8)S2與水氣亦有反應但稍趨緩。由實驗的分析與討論下,利用高鋁Ag(In1-xAlx)S2對濕氣特性,擬製作成濕氣感測元件。
    實驗部份由能量散射分析光譜儀(EDS)判斷晶體成份、X光繞射光譜儀(XRD)及拉曼光譜儀(Raman)量測確定單晶化合物結構。由光穿透(吸收)與熱調制光譜研究顯示此Cu(In1-xAlx)S2、CuAl(S1-xSex)2、Ag(In1-xAlx)S2及AgIn5S8 (1.73eV) 單晶晶體皆為直接能隙半導體,且能隙隨成份變化之關係皆可求得。此外光極化相關量測對於銅基及銀基I-III-VI2族黃銅礦晶體研究,可得知材料晶體之能隙具有光學非對稱性,不同基底黃銅礦半導體材料,能隙大小皆為極化相關,其原因來自於價帶頂端p軌道之晶場分裂 (crystal field splitting),並由熱調制光譜顯示能隙附近存在著多個激子躍遷信號,而激子也有極化相關性,配合光穿透(吸收)量測、X光電子能譜儀(XPS)與光學熱調制量測下提出此類晶體可能的能帶結構。


    Cu- and Ag-based chalcopyrites semiconductor crystals of Cu(In1-xAlx)S2, CuAl(S1-xSex)2, Ag(In1-xAlx)S2, and AgIn5S8 have been grown by chemical vapor transport method using ICl3 as a transport agent. In this dissertation, we analyze crystal structure and discuss optical properties of these series compounds. The Cu- and Ag-based chalcopyrites of Cu(In1-xAlx)S2, CuAl(S1-xSex)2, and Ag(In1-xAlx)S2 are wide band-gap semiconductors and crystallized in tetragonal structure.
    The as-grown Cu- and Ag-based chalcopyrites Cu(In1-xAlx)S2,CuAl(S1-xSex)2, and Ag(In1-xAlx)S2 show significant (112) plane and needle-like morphology. The chalcopyrite Cu(In1-xAlx)S2series covers the widest spectral range of energy gap ranging from 1.5 eV (CuInS2) to 3.5 eV (CuAlS2) which possesses the peak-absorption responses from near infrared (NIR) to ultraviolet (UV) region. By adding selenium elements, CuAl(S1-xSex)2 series can cover the values of direct band gap ranging from 2.5 eV (CuAlSe2) to 3.5 eV (CuAlS2). The band gap of CuAlSe2 dominates at green to blue color region while the absorption range of CuAlS2 works in the UV portion. The as-grown AgAlS2 crystal essentially shows a transparent and white color in vacuum while the as-grown Ag(In0.2Al0.8)S2 shows a faint yellowish color. The other compositions ingredients show reddish. When putting the AgAlS2 and Ag(In0.2Al0.8)S2 crystals into atmosphere, the crystals surface spontaneously transformed into oxygen deficient sample with darkened and brownish colors because of surface reaction with water vapor. The final products are Ag(InxAl1-x)O2, Ag2O, and Al2O3 oxides. The chemical reaction of higher Al elements Ag-based chalcopyrite crystals with water vapor is easy to happen under atmospheric ambient.
    Energy Dispersive Spectroscopy (EDS) verifies the stochiometry of the crystals. X-ray diffraction and Raman measurements confirm that the single crystals of Cu- and Ag-based I-III-VI2 series are crystallized in chalcopyrite structure with -42m symmetry and AgIn5S8 belongs to cubic structure (Fd-3m). The direct semiconducting behavior of all crystals has been verified by optical absorption and thermal modulation spectroscopy techniques. Furthermore, optical behaviors of E  < > and E || < > polarizations near band edge show slight variation for the Cu- and Ag-based chalcopyrites. Temperature-dependent TR spectra characterize the direct interband transitions of the Cu- and Ag-based chalcopyrites. Based on the optical and structural study, the fundamental properties of Cu- and Ag-based chalcopyrites crystals were thus realized. The good correspondence of the experimental results as well as the proposed band diagram verifies the crystalline quality of the chalcopyrites.

    Abstract III Acknowledgements V Table of Contents VI Symbols and Abbreviations IX List of Figures XI List of Tables XIX Chapter 1. Introduction 1 1.1 Introduction 1 1.2 Structure of Cu- and Ag-based I-III-VI2 and AgIn5S8 6 1.2.1 Cu- and Ag-based I-III-VI2 crystal structure 6 1.2.2 AgIn5S8 crystal sturcture 7 1.3 Outline of dissertation 8 Chapter 2. Crystal growth and experimental system setup 13 2.1 The single crystal growth 14 2.2 Powder X-ray diffraction: experimental details 15 2.3 Raman spectroscopy: experimental details 17 2.4 The transmittance measurements 17 2.5 Modulation spectroscopy system 19 2.5.1Thermoreflectance 23 2.5.2 Polarization-dependent TR 24 2.6 Photoluminescence 24 2.7 Temperature dependence characteristics of semiconductor 25 2.8 Photo voltage-current (V-I) measurement 26 Chapter 3. Growth and characterization of Cu(In1-xAlx)S2 chalcopyrites single crystals 37 3.1 Characterization of whole series Cu(AlxIn1-x)S2 (0x1) chalcopyrite crystals 39 3.2 Temperature-dependent thermoreflectance in Cu(In1-xAlx)S2 (0x1) chalcopyrite crystals 41 3.3 The study of XPS spectra in Cu(In1-xAlx)S2 (0x1) chalcopyrite crystals 45 3.4 Summary 49 Chapter 4. Optical properties of wide-band-gap chalcopyrite CuAl(Se1-xSx)2 62 4.1 Results and discussion 63 4.2 Summary 71 Chapter 5. Optical characterization and surface sensing behavior of AgAlS2 77 5.1 Description of chemical reactions in AgAlS2 79 5.2 The study of optical Properties in AgAlS2 82 5.3 Summary 91 Chapter 6. Dichroic optical behavior and polarized band-edge transitions in Ag(In0.5Al0.5)S2 crystal 102 6.1 Results and discussion 103 6.2 Summary 110 Chapter 7. Surface sensing behavior and optical property of Ag(In1-xAlx)S2 chalcopyrites 120 7.1 Results and discussion 121 7.2 Summary 127 Chapter 8. Structure and characterization of AgIn5S8 139 8.1 Results and discussion 139 8.2 Summary 144 Conclusions 154 Reference 157 Publications 167

    [1] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, "Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal “Inks” for Printable Photovoltaics," Journal of the American Chemical Society, vol. 130, pp. 16770-16777, 2008.
    [2] N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, "High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD)," Progress in Photovoltaics: Research and Applications, vol. 11, pp. 437-443, 2003.
    [3] B. D. Weil, S. T. Connor, and Y. Cui, "CuInS2 Solar Cells by Air-Stable Ink Rolling," Journal of the American Chemical Society, vol. 132, pp. 6642-6643, 2010.
    [4] H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, and H. Maeda, "Tunable Photoluminescence Wavelength of Chalcopyrite CuInS2-Based Semiconductor Nanocrystals Synthesized in a Colloidal System," Chemistry of Materials, vol. 18, pp. 3330-3335, 2006.
    [5] M. Krunks, O. Kijatkina, A. Mere, T. Varema, I. Oja, and V. Mikli, "Sprayed CuInS2 films grown under Cu-rich conditions as absorbers for solar cells," Solar Energy Materials and Solar Cells, vol. 87, pp. 207-214, 2005.
    [6] M. L. Albor Aguilera, J. R. Aguilar Hernandez, M. A. Gonzalez Trujillo, and M. Ortega Lopez, "Photoluminescence studies of p-type chalcopyrite AgInS2:Sn," Solar Energy Materials and Solar Cells, vol. 91, pp. 1483-1487, 2007.
    [7] S. Chichibu, H. Nakanishi, and S. Shirakata, "Ultraviolet photoluminescence from CuAlS2 heteroepitaxial layers grown by low‐pressure metalorganic chemical vapor deposition," Applied Physics Letters, vol. 66, pp. 3513-3515, 1995.
    [8] S. T. Connor, C. M. Hsu, B. D. Weil, S. Aloni, and Y. Cui, "Phase Transformation of Biphasic Cu2S−CuInS2 to Monophasic CuInS2 Nanorods," Journal of the American Chemical Society, vol. 131, pp. 4962-4966, 2009.
    [9] C. H. Ho, "Thermoreflectance characterization of band-edge excitonic transitions in CuAlS2 ultraviolet solar-cell material," Applied Physics Letters, vol. 96, pp. 061902-061902-3, 2010.
    [10] I. Tsuji, H. Kato, and A. Kudo, "Visible-Light-Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS–CuInS2–AgInS2 Solid-Solution Photocatalyst," Angewandte Chemie, vol. 117, pp. 3631-3634, 2005.
    [11] I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, "Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures," Journal of the American Chemical Society, vol. 126, pp. 13406-13413, 2004.
    [12] Y. Akaki, S. Kurihara, M. Shirahama, K. Tsurugida, S. Seto, T. Kakeno, and K. Yoshino, "Structural, electrical and optical properties of AgInS2 thin films grown by thermal evaporation method," Journal of Physics and Chemistry of Solids, vol. 66, pp. 1858-1861, 2005.
    [13] B. Mao, C. H. Chuang, J. Wang, and C. Burda, "Synthesis and Photophysical Properties of Ternary I–III–VI AgInS2 Nanocrystals: Intrinsic versus Surface States," The Journal of Physical Chemistry C, vol. 115, pp. 8945-8954, 2011.
    [14] Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, "Photoluminescence Properties and Its Origin of AgInS2 Quantum Dots with Chalcopyrite Structure," The Journal of Physical Chemistry C, vol. 115, pp. 1786-1792, 2011.
    [15] S. H. You, K. J. Hong, B. J. Lee, T. S. Jeong, C. J. Youn, J. S. Park, and S. N. Baek, "Temperature dependence of band gap and photocurrent properties for the AgInS2 epilayers grown by hot wall epitaxy," Journal of Crystal Growth, vol. 245, pp. 261-266, 2002.
    [16] C. H. Ho, S.-F. Lo, and P. C. Chi, "Electronic Structure and E1 Excitons of CuInS2 Energy-Related Crystals Studied by Temperature-Dependent Thermoreflectance Spectroscopy," Journal of The Electrochemical Society, vol. 157, pp. H219-H226, February 1, 2010.
    [17] Y. Shim, K. Hasegawa, K. Wakita, and N. Mamedov, "CuAl1−xInxSe2 solid solutions: Dielectric function and inter-band optical transitions," Thin Solid Films, vol. 517, pp. 1442-1444, 2008.
    [18] N. N. Syrbu, B. V. Korzun, A. A. Fadzeyeva, R. R. Mianzelen, V. V. Ursaki, and I. Galbic, "Exciton spectra and energy band structure of CuAlS2 crystals," Physica B: Condensed Matter, vol. 405, pp. 3243-3247, 2010.
    [19] M. I. Alonso, J. Pascual, M. Garriga, Y. Kikuno, N. Yamamoto, and K. Wakita, "Optical properties of CuAlSe2," Journal of Applied Physics, vol. 88, pp. 1923-1928, 2000.
    [20] M. Bettini, "Reflection measurements with polarization modulation: A method to investigate bandgaps in birefringent materials like I-III-VI2 chalcopyrite compounds," Solid State Communications, vol. 13, pp. 599-602, 1973.
    [21] J. L. Shay, B. Tell, L. M. Schiavone, H. M. Kasper, and F. Thiel, "Energy bands of AgInS2 in the chalcopyrite and orthorhombic structures," Physical Review B, vol. 9, pp. 1719-1723, 1974.
    [22] J. Krustok, J. Raudoja, M. Krunks, H. Mandar, and H. Collan, "Nature of the native deep localized defect recombination centers in the chalcopyrite and orthorhombic AgInS2," Journal of Applied Physics, vol. 88, pp. 205-209, 2000.
    [23] S. Ouyang, Z. Li, Z. Ouyang, T. Yu, J. Ye, and Z. Zou, "Correlation of Crystal Structures, Electronic Structures, and Photocatalytic Properties in a Series of Ag-based Oxides:  AgAlO2, AgCrO2, and Ag2CrO4," The Journal of Physical Chemistry C, vol. 112, pp. 3134-3141, 2008.
    [24] D. Wang, W. Zheng, C. Hao, Q. Peng, and Y. Li, "General synthesis of I-III-VI2 ternary semiconductor nanocrystals," Chemical Communications, pp. 2556-2558, 2008.
    [25] T. Torimoto, T. Adachi, K. i. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, and S. Kuwabata, "Facile Synthesis of ZnS−AgInS2 Solid Solution Nanoparticles for a Color-Adjustable Luminophore," Journal of the American Chemical Society, vol. 129, pp. 12388-12389, 2007.
    [26] W. N. Honeyman and K. H. Wilkinson, "Growth and properties of single crystals of group I-III-VI 2 ternary semiconductors," Journal of Physics D: Applied Physics, vol. 4, p. 1182, 1971.
    [27] E. E. Hellstrom and R. A. Huggins, "Silver ionic and electronic conductivity in Ag9GaS6, Ag9AlS6, AgGaS2, AgAlS2, and AgAl5S8," Journal of Solid State Chemistry, vol. 35, pp. 207-214, 1980.
    [28] E. Matatagui, A. G. Thompson, and M. Cardona, "Thermoreflectance in Semiconductors," Physical Review, vol. 176, pp. 950-960, 1968.
    [29] U. Akihiro, T. Satoshi, E. Saburo, and I. Taizo, "Optical and Electrical Properties of CuIn5S8 and AgIn5S8 Single Crystals," Japanese Journal of Applied Physics, vol. 20, p. L505, 1981.
    [30] I. Konovalov, L. Makhova, R. Hesse, and R. Szargan, "Intermixing, band alignment and charge transport in AgIn5S8/CuI heterojunctions," Thin Solid Films, vol. 493, pp. 282-287, 2005.
    [31] U. Akihiro, T. Satoshi, E. Saburo, and I. Taizo, "Optical and Electrical Properties of CuIn5S8 and AgIn5S8 Single Crystals," Japanese Journal of Applied Physics, vol. 20, p. L505, 1981.
    [32] J. J. M. Binsma, L. J. Giling, and J. Bloem, "Phase relations in the system Cu2S-In2S3," Journal of Crystal Growth, vol. 50, pp. 429-436, 1980.
    [33] J. Łażewski, P. T. Jochym, and K. Parlinski, "Band structure, Born effective charges, and lattice dynamics of CuInS2 from ab initio calculations," The Journal of Chemical Physics, vol. 117, pp. 2726-2731, 2002.
    [34] J. E. Jaffe and A. Zunger, "Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2," Physical Review B, vol. 28, pp. 5822-5847, 1983.
    [35] L. Gastaldi and L. Scaramuzza, "On the space groups of two thiospinels," Acta Crystallographica Section B, vol. 35, pp. 2283-2284, 1979.
    [36] C. H. Ho, "Enhanced photoelectric-conversion yield in niobium-incorporated In2S3 with intermediate band," Journal of Materials Chemistry, vol. 21, pp. 10518-10524, 2011.
    [37] C. H. Ho, "Single crystal growth and characterization of copper aluminum indium disulfide chalcopyrites," Journal of Crystal Growth, vol. 317, pp. 52-59, 2011.
    [38] F. H. Pollak and H. Shen, "Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices," Materials Science and Engineering: R: Reports, vol. 10, pp. 275-374, 1993.
    [39] X. Yin and F. H. Pollak, "Novel contactless mode of electroreflectance," Applied Physics Letters, vol. 59, pp. 2305-2307, 1991.
    [40] X. Yin, X. Guo, F. H. Pollak, G. D. Pettit, J. M. Woodall, T. P. Chin, and C. W. Tu, "Nature of band bending at semiconductor surfaces by contactless electroreflectance," Applied Physics Letters, vol. 60, pp. 1336-1338, 1992.
    [41] H. Shen, S. H. Pan, F. H. Pollak, and R. N. Sacks, "Electromodulation mechanisms for the uncoupled and coupled states of a GaAs/Ga0.82Al0.18As multiple-quantum-well structure," Physical Review B, vol. 37, pp. 10919-10922, 1988.
    [42] H. Mathieu, J. Allegre, and B. Gil, "Piezomodulation spectroscopy: A powerful investigation tool of heterostructures," Physical Review B, vol. 43, pp. 2218-2227, 1991.
    [43] C. H. Ho, H.-W. Lee, and Z. H. Cheng, "Practical thermoreflectance design for optical characterization of layer semiconductors," Review of Scientific Instruments, vol. 75, pp. 1098-1102, 2004.
    [44] L. Vina, S. Logothetidis, and M. Cardona, "Temperature dependence of the dielectric function of germanium," Physical Review B, vol. 30, pp. 1979-1991, 1984.
    [45] D. E. Aspnes and A. A. Studna, "Schottky-Barrier Electroreflectance: Application to GaAs," Physical Review B, vol. 7, pp. 4605-4625, 1973.
    [46] B. O. Seraphin and D. E. Aspnes, "Electric Field Effects in Optical and First-Derivative Modulation Spectroscopy," Physical Review B, vol. 6, pp. 3158-3160, 1972.
    [47] C. H. Ho, Y. J. Chen, H. W. Jhou, and J.-H. Du, "Optical anisotropy of ZnO nanocrystals on sapphire by thermoreflectance spectroscopy," Optics Letters, vol. 32, pp. 2765-2767, 2007.
    [48] C. H. Ho, "Optical study of the structural change in ReS2 single crystals using polarized thermoreflectance spectroscopy," Optics Express, vol. 13, pp. 8-19, 2005.
    [49] G. D. Gilliland, "Photoluminescence spectroscopy of crystalline semiconductors," Materials Science and Engineering: R: Reports, vol. 18, pp. 99-399, 1997.
    [50] E. Calleja, F. J. Sanchez, D. Basak, M. A. Sanchez-Garcia, E. Munoz, I. Izpura, F. Calle, J. M. G. Tijero, J. L. Sanchez-Rojas, B. Beaumont, P. Lorenzini, and P. Gibart, "Yellow luminescence and related deep states in undoped GaN," Physical Review B, vol. 55, pp. 4689-4694, 1997.
    [51] Y. P. Varshni, "Temperature dependence of the energy gap in semiconductors," Physica, vol. 34, pp. 149-154, 1967.
    [52] P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, "Interband critical points of GaAs and their temperature dependence," Physical Review B, vol. 35, pp. 9174-9189, 1987.
    [53] P. Lautenschlager, M. Garriga, and M. Cardona, "Temperature dependence of the interband critical-point parameters of InP," Physical Review B, vol. 36, pp. 4813-4820, 1987.
    [54] M. Eiermann, F. Wudl, M. Prato, and M. Maggini, "Electrochemically Induced Isomerization of a Fulleroid to a Methanofullerene," Journal of the American Chemical Society, vol. 116, pp. 8364-8365, 1994.
    [55] C. H. Ho, S. L. Lin, and C. C. Wu, "Thermoreflectance study of the electronic structure of Ge(Se1−xSx)2," Physical Review B, vol. 72, p. 125313, 2005.
    [56] C. H. Ho, M. C. Tsai, and M. S. Wong, "Characterization of indirect and direct interband transitions of anatase TiO2 by thermoreflectance spectroscopy," Applied Physics Letters, vol. 93, pp. 081904-081904-3, 2008.
    [57] D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang, and Y. Lu, "Synthesis of Cu−In−S Ternary Nanocrystals with Tunable Structure and Composition," Journal of the American Chemical Society, vol. 130, pp. 5620-5621, 2008.
    [58] S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, and A. F. Hepp, "Synthesis and Characterization of Colloidal CuInS2 Nanoparticles from a Molecular Single-Source Precursor," The Journal of Physical Chemistry B, vol. 108, pp. 12429-12435, 2004.
    [59] J. M. Peza-Tapia, A. Morales-Acevedo, and M. Ortega-Lopez, "Electrical characterization of Al, Ag and In contacts on CuInS2 thin films deposited by spray pyrolysis," Solar Energy Materials and Solar Cells, vol. 93, pp. 544-548, 2009.
    [60] J. E. Jaffe and A. Zunger, "Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors," Physical Review B, vol. 29, pp. 1882-1906, 1984.
    [61] B. Tell, J. L. Shay, H. M. Kasper, and R. L. Barns, "Valence-band structure of CuGaxIn1−xS2 alloys," Physical Review B, vol. 10, pp. 1748-1750, 1974.
    [62] J. E. Jaffe and A. Zunger, "Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors" Physical Review B, vol. 29, pp. 1882-1906, 1984.
    [63] K. Zeaiter and C. Llinares, "Optical properties of the quaternary alloy system Culn(SxSe1−x)2 investigated by spectroscopic ellipsometry," Journal of Applied Physics, vol. 86, pp. 6822-6825, 1999.
    [64] C. H. Ho and G. T. Huang, "Polarized-thermoreflectance study of the band-edge transitions in Cu(Al0.5In0.5)S2 solar-energy related crystal," Optics Express, vol. 18, pp. 3820-3827, 2010.
    [65] J. A. Van Vechten and T. K. Bergstresser, "Electronic Structures of Semiconductor Alloys," Physical Review B, vol. 1, pp. 3351-3358, 1970.
    [66] R. Hunger, C. Pettenkofer, and R. Scheer, "Dipole formation and band alignment at the Si(111)/CuInS2 heterojunction," Journal of Applied Physics, vol. 91, pp. 6560-6570, 2002.
    [67] C. Tablero and D. Fuertes Marrón, "Analysis of the Electronic Structure of Modified CuGaS2 with Selected Substitutional Impurities: Prospects for Intermediate-Band Thin-Film Solar Cells Based on Cu-Containing Chalcopyrites," The Journal of Physical Chemistry C, vol. 114, pp. 2756-2763, 2010.
    [68] A. Abdellaoui, M. Ghaffour, M. Bouslama, S. Benalia, A. Ouerdane, B. Abidri, and Y. Monteil, "Structural phase transition, elastic properties and electronic properties of chalcopyrite CuAlX2 (X = S, Se, Te)," Journal of Alloys and Compounds, vol. 487, pp. 206-213, 2009.
    [69] J. L. Shay, E. Buehler, and J. H. Wernick, "Electrical Properties, Optical Properties, and Band Structure of CuGaS2 and CuInS2," Physical Review B, vol. 3, pp. 2004-2011, 1971.
    [70] C. H. Ho, "Temperature Dependent Crystal-Field Splitting and Band-Edge Characteristic in Cu(AlxIn1-x)S2 (0 ≤ x ≤ 1) Series Solar Energy Materials," Journal of The Electrochemical Society, vol. 158, pp. H554-H560, May 1, 2011 2011.
    [71] S. Shirakata, S. Chichibu, and S. Isomura, "Crystal Growth and Optical Properties of CuAl(SxSe1-x)2 Alloys," Japanese Journal of Applied Physics, vol. 36, p. 6645, 1997.
    [72] N. Tsuboi, Y. Hashimoto, M. Kurasawa, S. Kobayashi, and F. Kaneko, "Preparation and Properties of Ag(AlxGa1-x)S2 Crystals by Iodine Transport Method," Japanese Journal of Applied Physics, vol. 38, pp. 6445-6449, 1999.
    [73] J. Li and A. W. Sleight, "Structure of β-AgAlO2 and structural systematics of tetrahedral MMX2 compounds," Journal of Solid State Chemistry, vol. 177, pp. 889-894, 2004.
    [74] W. C. Sheets, E. S. Stampler, M. I. Bertoni, M. Sasaki, T. J. Marks, T. O. Mason, and K. R. Poeppelmeier, "Silver Delafossite Oxides," Inorganic Chemistry, vol. 47, pp. 2696-2705, 2008.
    [75] K. W. Cheng and S.-C. Wang, "Influence of chelating agents on the growth and photoelectrochemical responses of chemical bath-synthesized AgIn5S8 film electrodes," Solar Energy Materials and Solar Cells, vol. 93, pp. 307-314, 2009.
    [76] S. Ouyang and J. Ye, "β-AgAl1-xGaxO2 Solid-Solution Photocatalysts: Continuous Modulation of Electronic Structure toward High-Performance Visible-Light Photoactivity," Journal of the American Chemical Society, vol. 133, pp. 7757-7763, 2011.
    [77] M. Robbins and M. A. Miksovsky, "Preparation of and phase relationships in systems of the type ZnSMIMIIIS2 where MI = Cu, Ag and MIII = In, Ga, Al," Journal of Solid State Chemistry, vol. 5, pp. 462-466, 1972.
    [78] Y. Ida, S. Watase, T. Shinagawa, M. Watanabe, M. Chigane, M. Inaba, A. Tasaka, and M. Izaki, "Direct Electrodeposition of 1.46 eV Bandgap Silver(I) Oxide Semiconductor Films by Electrogenerated Acid," Chemistry of Materials, vol. 20, pp. 1254-1256, 2008.
    [79] L. M. Lyu and M. H. Huang, "Investigation of Relative Stability of Different Facets of Ag2O Nanocrystals through Face-Selective Etching," The Journal of Physical Chemistry C, vol. 115, pp. 17768-17773, 2011.
    [80] L. M. Lyu, W. C. Wang, and M. H. Huang, "Synthesis of Ag2O Nanocrystals with Systematic Shape Evolution from Cubic to Hexapod Structures and Their Surface Properties," Chemistry – A European Journal, vol. 16, pp. 14167-14174, 2010.
    [81] S. Ouyang, H. Zhang, D. Li, T. Yu, J. Ye, and Z. Zou, "Electronic Structure and Photocatalytic Characterization of a Novel Photocatalyst AgAlO2," The Journal of Physical Chemistry B, vol. 110, pp. 11677-11682, 2006.
    [82] S. Ouyang, N. Kikugawa, D. Chen, Z. Zou, and J. Ye, "A Systematical Study on Photocatalytic Properties of AgMO2 (M = Al, Ga, In): Effects of Chemical Compositions, Crystal Structures, and Electronic Structures," The Journal of Physical Chemistry C, vol. 113, pp. 1560-1566, 2009.
    [83] N. K. Pandey, K. Tiwari, and A. Roy, "Moisture Sensing Application of Cu2O Doped ZnO Nanocomposites," Sensors Journal, IEEE, vol. 11, pp. 2142-2148, 2011.
    [84] M. Almasi Kashi, A. Ramazani, H. Abbasian, and A. Khayyatian, "Capacitive humidity sensors based on large diameter porous alumina prepared by high current anodization," Sensors and Actuators A: Physical, vol. 174, pp. 69-74, 2012.
    [85] V. C. Goncalves and D. T. Balogh, "Optical chemical sensors using polythiophene derivatives as active layer for detection of volatile organic compounds," Sensors and Actuators B: Chemical, vol. 162, pp. 307-312, 2012.
    [86] D. Papadimitriou, N. Esser, and C. Xue, "Structural properties of chalcopyrite thin films studied by Raman spectroscopy," physica status solidi (b), vol. 242, pp. 2633-2643, 2005.
    [87] S. Roy, P. Guha, S. N. Kundu, H. Hanzawa, S. Chaudhuri, and A. K. Pal, "Characterization of Cu(In,Ga)Se2 films by Raman scattering," Materials Chemistry and Physics, vol. 73, pp. 24-30, 2002.
    [88] M. Hiroaki, E. Saburo, and I. Taizo, "Raman-Scattering Properties of I-III-VI2 Group Chalcopyrite Semiconductors," Japanese Journal of Applied Physics, vol. 31, p. 18, 1992.
    [89] Y. J. Zhao and A. Zunger, "Electronic structure and ferromagnetism of Mn-substituted CuAlS2, CuGaS2, CuInS2, CuGaSe2, and CuGaTe2," Physical Review B, vol. 69, p. 104422, 2004.
    [90] M. Sugiyama, H. Nakanishi, and S. F. Chichibu, "Experimental Determination of Valence Band Discontinuities at Cu(Al,Ga)(S,Se)2/GaAs(001) Heterointerfaces Using Ultraviolet Photoemission Spectroscopy," Japanese Journal of Applied Physics, vol. 40, p. L428, 2001.
    [91] B. B. Kale, J. O. Baeg, S. M. Lee, H. Chang, S. J. Moon, and C. W. Lee, "CdIn2S4 Nanotubes and “Marigold” Nanostructures: A Visible-Light Photocatalyst," Advanced Functional Materials, vol. 16, pp. 1349-1354, 2006.
    [92] T. Tokuda, A. Nagaoka, and K. Yoshino, "Growth of AgInS2 Crystals grown by hot-press method," in Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE, 2009, pp. 002405-002408 2009.
    [93] L. V. Makhova, I. Konovalov, and R. Szargan, "Growth and characterization of AgIn5S8 and CuIn5S8 thin films," physica status solidi (a), vol. 201, pp. 308-311, 2004.
    [94] K. W. Cheng, C. M. Huang, G. T. Pan, W.-S. Chang, T.-C. Lee, and T. C. K. Yang, "Effect of Sb on the growth and photoelectrochemical response of AgIn5S8 film electrodes created by solution growth technique," Chemical Engineering Science, vol. 65, pp. 74-79, 2010.
    [95] A. F. Qasrawi, "Light intensity effects on electrical properties of AgIn5S8 thin films," Thin Solid Films, vol. 519, pp. 6583-6586, 2011.
    [96] K. Goksen, N. M. Gasanly, and R. Turan, "Excitation intensity and temperature-dependent photoluminescence and optical absorption in Tl4Ga3InSe8 layered crystals," Crystal Research and Technology, vol. 41, pp. 822-828, 2006.
    [97] N. M. Gasanly, A. Z. Magomedov, N. N. Melnik, and B. G. Salamov, "Raman and Infrared Studies of AgIn5S8 and CuIn5S8 Single Crystals," physica status solidi (b), vol. 177, pp. K31-K35, 1993.
    [98] L. H. Lin, C.-C. Wu, and T.-C. Lee, "Growth of Crystalline AgIn5S8 Thin Films on Glass Substrates from Aqueous Solutions," Crystal Growth & Design, vol. 7, pp. 2725-2732, 2007.
    [99] A. F. Qasrawi, T. S. Kayed, and İ. Ercan, "Photoconductivity kinetics in AgIn5S8 thin films," Journal of Alloys and Compounds, vol. 508, pp. 380-383, 2010.
    [100] N. S. Orlova, I. V. Bodnar, and E. A. Kudritskaya, "Crystal Growth and Properties of the CuIn5S8 and AgIn5S8 Compounds," Crystal Research and Technology, vol. 33, pp. 37-42, 1998.
    [101] N. M. Gasanly, A. Serpenguzel, A. Aydinli, O. Gurlu, and I. Yilmaz, "Donor-acceptor pair recombination in AgIn5S8 single crystals," Journal of Applied Physics, vol. 85, pp. 3198-3201, 1999.
    [102] S. P. Hong, H. K. Park, J. H. Oh, H. Yang, and Y. R. Do, "Comparisons of the structural and optical properties of o-AgInS2, t-AgInS2, and c-AgIn5S8 nanocrystals and their solid-solution nanocrystals with ZnS," Journal of Materials Chemistry, vol. 22, pp. 18939-18949, 2012.

    QR CODE