簡易檢索 / 詳目顯示

研究生: 許文賢
Wen-Hsien Hsu
論文名稱: 人工椎體支撐器之生物力學分析與機械測試
Biomechanical Analyses and Experimental Test of the Vertebral Body Cage
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 陳博光
Po-Quang Chen
林上智
Shang-Chih Lin
王兆麟
Jaw-LinWang
孫瑞昇
Jui-Sheng Sun
徐慶琪
Ching-Chi Hsu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 152
中文關鍵詞: 有限元素法田口方法人工椎體支撐器生物力學測試抗壓強度抗拉強度
外文關鍵詞: Finite Element Analysis, Taguchi Method, Vertebral Body Cage, Experimental Test, Compressive Strength, Pullout Strength
相關次數: 點閱:529下載:42
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

人工脊椎椎體支撐器是目前臨床上常用來治療脊椎不同的疾病,例如骨髓炎、破壞的椎體、腫瘤癌細胞轉移脊體、癌症及感染等的治療方法。然而,人工椎體置換術在手術一段時間後,尤其骨質密度差的狀況會有骨融合失敗、滑脫、下陷與植入物破壞的缺點,椎體支撐器的介面與椎體接觸是重要的課題。本研究的目的是防止人工支撐器之下陷與滑脫,使用有限元素法及田口方法來研究變化參數之影響,尋找最佳化的人工脊椎椎骨支撐器之接觸形狀,並以人造假骨實驗驗證最佳化結果,利用牛骨做壓力測試比對不同骨質密度的差異,再驗證防止下陷最佳化結果。
本研究包含三個主題有分析比較市售人工脊椎椎體支撐器之設計,抗拉強度及抗壓強度設計分析與實驗。首先,以電腦斷層掃瞄儀取得台灣健康37歲男子六節脊椎T12∼L5的影像,量測尺寸後繪製三維圖形建構脊椎L2到L4模型,其中L3模擬椎體切除手術(corpectomy),植入市售不同的人工脊椎椎骨支撐器,並植入後方固定器,以有限元素分析非線性壓力接觸運算,比較Stryker牌與TMC型的下陷量。其次,在橫向位移防止滑脫方面:利用田口方法來評估尖釘(the spike)與橫斷接觸面積,選用六種因子設定尖釘與橫斷面尺寸,有尚未骨融合及已經骨融合兩種的情狀,在尚未骨融合條件下,建議最佳化因子的水準為 ,防止滑脫的最佳化的組合是角柱型尖釘、尖釘高度是2mm、尖釘底座尺寸2.2mm、全斜鉤幾何造型、每28mm直徑有11排尖釘,內徑是10mm。有骨融合的條件下,建議最佳化因子的水準為 ,對應的構造是角椎型尖釘、2mm高的尖釘、尖釘底座尺寸2.2mm、全斜鉤幾何、每28mm直徑有11排尖釘,內徑是20mm。比較總反作用力數據,有骨融合的模型比未骨融合的模型平均高26%。在有限元素分析與機械測試驗證方面有不錯的關係,其相關性係數達0.802。再者,在縱向位移防止下陷方面:建議出最佳化因子 ,對應的幾何造型為的最佳化的組合如下:角柱型尖釘、完全倒鉤型的尖釘造型、2 mm的尖釘高度、尖釘底部尺寸 1.4 mm,在外徑28mm下尖釘11 排,用來骨融合的內徑是10mm。在有限元素分析與機械測試驗證方面有不錯的關係,其相關性係數達0.847。
我們一起考慮拉出強度與抗壓強度我們選擇 ,理由是設計人工椎體支撐器不僅要考慮人工椎體支撐器尖釘尺寸與器形狀,也要考慮到抗拉強度。以有限元素為基楚的田口方法能降低設計時間,有效評估植入物的設計因子,可公正地估算每一個設計因子的貢獻度。


The Vertebral Body cages (VBCs) have been used to treat vertebral bodies with different maladies such as osteomyelitis, severe compression fracture, metastases, tumor, or infection. However, a vertebral body replacement commonly experiences graft fracture, loosening, and collapse in a short period after an orthopaedic surgery especially for the osteoporotic bone. The interface between the implant and vertebral body is an important topic. Therefore, the purposes of this study were to analyze the subsidence and loosening by using a FEM-based Taguchi method and mechanical tests and to investigate the effects of various factors to find the robust design of the vertebral body cage interface.
In this study, three kinds of topics would be discussed including the comparative study of the commercially VBC designs, the pullout strength of the VBC, and the subsidence of the VBC. Firstly, the analytical model, which based on a 37-year-old man with no clinical or roentgenological abnormalities, was obtained by computed tomography (CT) scanning. Three-dimensional finite element models of the lumbar spine were created with a vertebral body replacement at L3, and a paired internal fixation device between L2 and L4 was also inserted. The subsidence of both Stryker VBC and Titanium mesh cage (TMC) was performed and compared. The results showed that Stryker VBC was superior to TMC. Secondly, the pullout strength of the VBCs would be evaluated by the Taguchi method and the finite element analysis. Six design variables of the VBCs were considered. Two kinds of fusion situations were discussed including the model with bone fusion and that without bone fusion. The results revealed that the optimum factor level settings in the situation without bone fusion was , which correspond to the pyramidal spike type, a spike height of 2 mm,a spike diameter of 2.2 mm, an oblique geometry, 11 rows per 28 mm, and an inner diameter of 10 mm. In addition, the optimum factor level settings in the situation with bone fusion was , which correspond to the conical spike type, a spike height of 2 mm, a spike diameter of 2.2 mm, an oblique geometry, 11 rows per 28 mm, and an inner diameter of 20 mm. In the correlation study, the results of the finite element models were closely related to that of the mechanical tests with a high correlation coefficient of 0.802. Thirdly, the subsidence of the VBCs was analyzed by using the same method. The results showed that the optimum factor level settings in the situation without bone fusion was , which correspond to the pyramidal spike type, a spike height of 2 mm,a spike diameter of 1.4 mm, an oblique geometry, 11 rows per 28 mm, and an inner diameter of 10 mm. In the correlation study, a high correlation coefficient of 0.847 between the finite element models and the mechanical tests was found. The optimum design of the VBC was , if both the pullout strength and the subsidence were considered simultaneously.
In the conclusions, the FEM-based Taguchi method could decrease the effort and time needed to analyze the spike factors of the VBC, and the mechanical tests might provide useful evidence to prove the applicability of the finite element models.

中文摘要……………………………………………………………………… I 英文摘要 …………………………………………………………….. ……… III 誌 謝 ………………………………………………………………………… V 目 錄 ………………………………………………………………………… VI 符號索引 …………………………………………………………….. ……… X 圖表索引 …………………………………………………………….. ……… XII 第一章 緒 論 ………………………………………………………. ……… 1 1.1 研究動機、背景與目的 …………………………………………… 1 1.2文獻回顧.……………………………………. ……………………… 5 1.3本文架構…………………….. ……………………………………… 9 第二章 脊椎解剖構造、病灶與臨床治療………………………………… 12 2.1脊椎解剖構造………………………………………………………… 12 2.2脊椎病灶與重建治療…………………. …………………………… 16 2.2.1脊椎病灶……………………………………………………… 16 2.2.2重建治療的方法……………………………………………… 18 2.2.3人工椎體支撐器簡介………………………………………… 24 2.3脊椎椎體置換手術步驟……………………………………………… 28 2.4人工椎體支撐器植入後失效情形………………………………… 34 頁次 第三章 脊椎幾何尺寸量測與有限元素分析……………………………… 38 3.1電腦斷層掃瞄與骨質密度掃瞄……………………………………… 38 3.1.1電腦斷層掃瞄影像……………………………………………… 38 3.1.2腰椎骨質密度掃瞄……………………………………………… 39 3.2脊椎幾何尺寸量測…………………………………………………… 41 3.3有限元素分析………………………………………………………… 50 3.3.1模型設定與腰椎材料性質……………………………………… 51 3.3.2受力條件與邊界條件…………………………………………… 53 3.3.3結果與討論……………………………………………………… 54 第四章 人工椎體支撐器與椎體介面拉出強度分析……………………… 64 4.1有限元素模擬………………………………………………………… 64 4.2 田口參數化分析………………………………………. …………… 66 4.2.1田口工程品質法………………………………………………… 66 4.2.2分析結果………………………………………………………… 69 4.3生物力學實驗………………………………………………………… 77 4.3.1實驗材料與方法………………………………………………… 77 4.3.2實驗結果………………………………………………………… 78 4.4討論…………………………………………………………………… 81 第五章 人工椎體支撐器與椎體介面下陷分析…………………………… 86 頁次 5.1有限元素模擬………………………………………………………… 87 5.1.1下陷模型………………………………………………………… 87 5.2 田口參數化分析………………………………………. …………… 88 5.2.1抗壓強度之參數化分析………………………………………… 88 5.2.2分析結果………………………………………………………… 90 5.3生物力學實驗………………………………………………………… 94 5.3.1實驗材料與方法………………………………………………… 94 5.3.2實驗結果………………………………………………………… 95 5.4動物脊椎抗壓強度分析……………………………………………… 99 5.4.1材料與方法……………………………………………………… 99 5.4.2實驗結果………………………………………………………… 101 5.5討論…………………………………………………………………… 108 第六章 綜合討論與建議…..……….…………………………..…………… 115 6.1綜合討論……………………………………………………………… 115 6.2介面設計與臨床手術上的建議…………….……………………… 117 6.3改良後的人工椎體支撐器……….………….……………………… 119 第七章 結論與展望…….…………….………………………….. ………… 122 7.1 結論……………….………….……………………………………… 122 7.1.1抗拉強度…….………….……………………………………… 122 頁次 7.1.2抗壓強度與下陷防止….……………………………………… 123 7.1.3保留部分脊椎端板是必要的…………………………………… 123 7.2 未來展望………………….………………………………………… 124 參考文獻………………….………….………………………………..……… 125 附錄………………….………….……………………………….. …………… 132 A1.VBR手術步驟手術流程圖….………………………………..……… 132 B1.新型「人工脊椎之椎體支架」之設計….…………………………… 134 B2.「可調整角度人工脊椎之椎體支撐器」之設計….………………… 137 B3.「具提高骨融合效率之脊椎板狀固定器」之設計….……………… 143 C.「手術輔助架」之設計….………………………………..……… 144 作者簡介………………….………….………………………………….……. 147

1. Fayazi, A. H., Ludwig, S. C., Dabbah, M., Bryan Butler, R., and Gelb, D. E., "Preliminary results of staged anterior debridement and reconstruction using titanium mesh cages in the treatment of thoracolumbar vertebral osteomyelitis," Spine Journal: Official Journal of the North American Spine Society, Vol. 4, No. 4, pp. 388-395 (2004).
2. Dvorak, M. F., Kwon, B. K., Fisher, C. G., Eiserloh, H. L., 3rd, Boyd, M., and Wing, P. C., "Effectiveness of titanium mesh cylindrical cages in anterior column reconstruction after thoracic and lumbar vertebral body resection," Spine, Vol. 28, No. 9, pp. 902-908 (2003).
3. Grant, J. P., Oxland, T. R., Dvorak, M. F., and Fisher, C. G., "The effects of bone density and disc degeneration on the structural property distributions in the lower lumbar vertebral endplates," Journal of Orthopaedic Research, Vol. 20, No. 5, pp. 1115-1120 (2002).
4. Lim, T. H., Kwon, H., Jeon, C. H., Kim, J. G., Sokolowski, M., and Natarajan, R., et al., "Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion," Spine, Vol. 26, No. 8, pp. 951-956 (2001).
5. Steffen, T., Tsantrizos, A., and Aebi, M., "Effect of implant design and endplate preparation on the compressive strength of interbody fusion constructs," Spine, Vol. 25, No. 9, pp. 1077-1084 (2000).
6. Oxland, T. R., Grant, J. P., Dvorak, M. F., and Fisher, C. G., "Effects of endplate removal on the structural properties of the lower lumbar vertebral bodies," Spine, Vol. 28, No. 8, pp. 771-777 (2003).
7. Yang, K., Teo, E.C., and Fuss, F. K., "Application of Taguchi method in optimization of cervical ring cage," Journal of Biomechanics, Vol. 40, No. 14, pp. 3251-3256 (2007).
8. Lowe, T. G., Hashim, S., Wilson, L. A., O'Brien, M. F., Smith, D. A. B., and Diekmann, M. J., et al., "A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support," Spine, Vol. 29, No. 21, pp. 2389-2394 (2004).
9. Tan, J.-S., Bailey, C. S., Dvorak, M. F., Fisher, C. G., and Oxland, T. R., "Interbody device shape and size are important to strengthen the vertebra-implant interface," Spine, Vol. 30, No. 6, pp. 638-644 (2005).
10. Patel , M. F., and Langdon, J. D., "Titanium mesh (TiMesh) osteosynthesis: a fast and adaptable method of semi-rigid fixation," Br Journal Oral Maxillofac Surg., Vol. 29, No., pp. 316–324 (1991).
11. Knop, C., Lange, U., Bastian, L., Oeser, M., and Blauth, M., "Biomechanical compression tests with a new implant for thoracolumbar vertebral body replacement," European Spine Journal, Vol. 10, No. 1, pp. 30-37 (2001).
12. Pflugmacher, R., Schleicher, P., Schaefer, J., Scholz, M., Ludwig, K., and Khodadadyan- Klostermann, C., et al., "Biomechanical comparison of expandable cages for vertebral body replacement in the thoracolumbar spine," Spine, Vol. 29, No. 13, pp. 1413-1419 (2004).
13. Vahldiek, M. J. M. D., and Panjabi, M. M. P., "Stability Potential of Spinal Instrumentations in Tumor Vertebral Body Replacement Surgery," Spine, Vol. 23, No. 5, pp. 543-550 (1998).
14. Ruf, M., Stoltze, D., Merk, H. R., Ames, M., Harms, J., and Ruf, M., et al., "Treatment of vertebral osteomyelitis by radical debridement and stabilization using titanium mesh cages," Spine, Vol. 32, No. 9, pp. E275-280 (2007).
15. Mehmet, A., Omer, K., Cuneyd, M., ,Cagatay, O., Mehmet ,T., and Azmi, H., "Severe erosion of lumbar vertebral body because of a chronic ruptured abdominal aortic aneurysm," The Spine Journal, Vol. 8, No. 2, pp. 394-396 (2008).
16. Ragel, B. T., Amini, A., and Schmidt, M. H., "Thoracoscopic vertebral body replacement with an expandable cage after ventral spinal canal decompression," Neurosurgery, Vol. 61, No. 5, Suppl 2, pp. 317-322(2007).
17. O'Shaughnessy, B. A., Ondra, S. L., Ganju, A., Said, H. K., Few, J. W., and Liu, J. C., et al., "Anterior thoracic spine reconstruction using a titanium mesh cage and pedicled rib flap," Spine, Vol. 31, No. 16, pp. 1820-1827 (2006).
18. Korovessis, P., Petsinis, G., Koureas, G., Iliopoulos, P., and Zacharatos, S., "Anterior surgery with insertion of titanium mesh cage and posterior instrumented fusion performed sequentially on the same day under one anesthesia for septic spondylitis of thoracolumbar spine: is the use of titanium mesh cages safe?," Spine, Vol. 31, No. 9, pp. 1014-1019 (2006).
19. Kluba, T., and Giehl, J. P., "Distractible vertebral body replacement in patients with malignant vertebral destruction or osteoporotic burst fractures.," International Orthopaedics, Vol. 28, No. 2, pp. 106-109 (2004).
20. Bhat, A., Lowery, G., and Sei, A., "The use of titanium surgical mesh-bone graft composite in the anterior thoracic or lumbar spine after complete or partial corpectomy.," European Spine, Vol. 8, No. 4, pp. 304-309 (1999).
21. Grob, D., Daehn, S., and Mannion, A. F., "Titanium mesh cages (TMC) in spine surgery," European Spine Journal, Vol. 14, No. 3, pp. 211-221 (2005).
22. Fayazi, A. H., Ludwig, S. C., Dabbah, M., Bryan Butler, R., Gelb, D. E., and Fayazi, A. H., et al., "Preliminary results of staged anterior debridement and reconstruction using titanium mesh cages in the treatment of thoracolumbar vertebral osteomyelitis," Spine Journal: Official Journal of the North American Spine Society, Vol. 4, No. 4, pp. 388-395 (2004).
23. Jost, B., Cripton, P. A., Lund, T., Oxland, T. R., Lippuner, K., and Jaeger, P., et al., "Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density," Eur Spine J, Vol. 7(2), No., pp. 132-141 (1998).
24. Rupert, H. J., Dietl, and Krammer, M., "Pullout Test With Three Lumbar Interbody Fusion Cages," Spine Journal, Vol. 27, No. 10, pp. 1029-1036 (2002).
25. Thongtyrangan, I., Balabhadra, R., Le, H., Park, J., and Kim, D. H., "Vertebral body replacement with and expandable cage for reconstruction after spinal tumor resection," Neurosurg Focus, Vol. 15(5), No., pp. 1-6 (2003).
26. Akamaru, T., Kawahara, N., Sakamoto, J., Yoshida, A., Murakami, H., and Hato, T., et al., "The transmission of stress to grafted bone inside a titanium mesh cage used in anterior column reconstruction after total spondylectomy: a finite-element analysis," Spine, Vol. 30, No. 24, pp. 2783-2787 (2005).
27. Rohlmann, A., Zander, T., and Bergmann, G., "Effects of fusion-bone stiffness on the mechanical behavior of the lumbar spine after vertebral body replacement," Clinical Biomechanics, Vol. 21, No. 3, pp. 221-227 (2006).
28. Hasegawa, K., Abe, M., Washio, T., and Hara, T., "An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density," Spine, Vol. 26, No. 8, pp. 957-963 (2001).
29. Knoller, S. M., Meyer, G., Eckhardt, C., Lill, C. A., Schneider, E., and Linke, B., "Range of motion in reconstruction situations following corpectomy in the lumbar spine: a question of bone mineral density?," Spine, Vol. 30, No. 9, pp. E229-235 (2005).
30. Benzel, E. C., Biomechanics of Spine Stablilzation, American Association of Neurological Surgeons, Illinois(2001).
31. Netter, F. H., Netter's Atlas of Human Anatomy, 合記圖書出版社, Taipei (2002)
32. Wilke, H. J., Wenger, K., and Claes, L., "Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants," European Spine Journal, Vol. 7, No. 2, pp. 148-154 (1998).
33. Lange, U., Edeling, S., Knop, C., Bastian, L., Oeser, M., and Krettek, C., et al., "Anterior vertebral body replacement with a titanium implant of adjustable height: a prospective clinical study," European Spine Journal, Vol. 16, No. 2, pp. 161-172 (2007).
34. Fisher, C. G., Keynan, O., Boyd, M. C., Dvorak, M. F., Fisher, C. G., and Keynan, O., et al., "The surgical management of primary tumorsof the spine: initial results of an ongoing prospective cohort study," Spine, Vol. 30, No. 16, pp. 1899-1908 (2005).
35. Borm, W., Gleixner, M., Klasen, J., Borm, W., Gleixner, M., and Klasen, J., "Spinal tumors in coexisting degenerative spine disease--a differential diagnostic problem," European Spine Journal, Vol. 13, No. 7, pp. 633-638 (2004).
36. Hussein, A. A., El-Karef, E., and Hafez, M., "Reconstructive surgery in spinal tumours," European Journal of Surgical Oncology, Vol. 27, No. 2, pp. 196-199 (2001).
37. Amir H. Fayazi, Steven C. Ludwig, Michael Dabbah, , and R. Bryan Butler, D. E. G., "Preliminary results of staged anterior debridement and reconstruction using titanium mesh cages in the treatment of thoracolumbar vertebral osteomyelitis," The Spine Journal, Vol. 4, No., pp. 388-395 (2004).
38. 施庭芳,磁振造影於脊椎病變的應用,國立台灣大學醫學院,台北 (2002).
39. Akamaru, T., Kawahara, N., Tsuchiya, H., Kobayashi, T., Murakami, H., and Tomita, K., et al., "Healing of autologous bone in a titanium mesh cage used in anterior column reconstruction after total spondylectomy," Spine, Vol. 27, No. 13, pp. E329-333 (2002).
40. Disch, A. C., Schaser, K. D., Melcher, I., Luzzati, A., Feraboli, F., and Schmoelz, W., "En bloc spondylectomy reconstructions in a biomechanical in-vitro study," European Spine Journal, Vol. 17, No. 5, pp. 715-725 (2008).
41. Akamaru, T., Kawahara, N., Sakamoto, J., Yoshida, A., Murakami, H., and Hato, T., et al., "The transmission of stress to grafted bone inside a titanium mesh cage used in anterior column reconstruction after total spondylectomy: a finite-element analysis," Spine, Vol. 30, No. 24, pp. 2783-2787 (2005).
42. Rieger, A., Holz, C., Marx, T., Sanchin, L., and Menzel, M., "Vertebral autograft used as bone transplant for anterior cervical corpectomy: technical note," Neurosurgery, Vol. 52, No. 2, pp. 449-453; discussion 453-444 (2003).
43. Chen, Y., Chen, D., Guo, Y., Wang, X., Lu, X., and He, Z., et al., "Subsidence of titanium mesh cage: a study based on 300 cases," Journal of Spinal Disorders & Techniques, Vol. 21, No. 7, pp. 489-492 (2008).
44. Acosta, F. L., Jr., Aryan, H. E., Chou, D., and Ames, C. P., "Long-term biomechanical stability and clinical improvement after extended multilevel corpectomy and circumferential reconstruction of the cervical spine using titanium mesh cages," Journal of Spinal Disorders & Techniques, Vol. 21, No. 3, pp. 165-174 (2008).
45. Lange, U., Knop, C., Bastian, L., and Blauth, M., "Prospective multicenter study with a new implant for thoracolumbar vertebral body replacement," Archives of Orthopaedic & Trauma Surgery, Vol. 123, No. 5, pp. 203-208 (2003).
46. Ernstberger, T., Kogel, M., Konig, F., and Schultz, W., "Expandable vertebral body replacement in patients with thoracolumbar spine tumors," Archives of Orthopaedic & Trauma Surgery, Vol. 125, No. 10, pp. 660-669 (2005).
47. Woiciechowsky, C., and Woiciechowsky, C., "Distractable vertebral cages for reconstruction after cervical corpectomy," Spine, Vol. 30, No. 15, pp. 1736-1741 (2005).
48. Ou, Y., Lu, J., Mi, J., Cheng, l., Zhang, J., and Li, Y., et al., "Extensive anterior decompression for mixed cervical spondylosis. Resection of uncovertebral joints, neural and transverse foraminotomy, subtotal corpectomy, and fusion with strut graft," Spine, Vol. 19, No. 23, pp. 2651-2656; discussion 2656-2657 (1994).
49. Epstein, N. E., "Complication avoidance in 116 dynamic-plated single-level anterior corpectomy and fusion," Journal of Spinal Disorders & Techniques, Vol. 20, No. 5, pp. 347-351 (2007).
50. Hwang, S.L., Lee, K.S., Su, Y.F., Kuo, T.H., Lieu, A.S., and Lin, C.L., et al., "Anterior corpectomy with iliac bone fusion or discectomy with interbody titanium cage fusion for multilevel cervical degenerated disc disease," Journal of Spinal Disorders & Techniques, Vol. 20, No. 8, pp. 565-570 (2007).
51. Ikenaga, M., Shikata, J., and Tanaka, C., "Long-term results over 10 years of anterior corpectomy and fusion for multilevel cervical myelopathy," Spine, Vol. 31, No. 14, pp. 1568-1574; discussion 1575 (2006).
52. Epstein, N. E., and Dickerman, R. D., "Delayed iliac crest autograft fractures following plated single-level anterior cervical corpectomy with fusion," Journal of Spinal Disorders & Techniques, Vol. 15, No. 5, pp. 420-424 (2002).
53. Eck, K. R. M.D., Bridwell, K. H. M.D., Ungacta, F. F. M.D., Lapp, M.A. M.D., Lenke, L. G. M. D., and Daniel Riew, K. M., "Analysis of Titanium Mesh Cages in Adults With Minimum Two-Year Follow-Up," Spine, Vol. 25, No. 18, pp. 2407-2415 (2000).
54. Kluba, T., and Giehl, J. P., "Distractible vertebral body replacement in patients with malignant vertebral destruction or osteoporotic burst fractures.," International Orthopaedics, Vol. 28, No. 2, pp. 106-109 (2004).
55. Lange, U., Knop, C., Bastian, L., and Blauth, M., "Prospective multicenter study with a new implant for thoracolumbar vertebral body replacement," Archives of Orthopaedic & Trauma Surgery, Vol. 123, No. 5, pp. 203-208 (2003).
56. Robertson, P. A., Rawlinson, H. J., and Hadlow, A. T., "Radiologic stability of titanium mesh cages for anterior spinal reconstruction following thoracolumbar corpectomy," Journal of Spinal Disorders & Techniques, Vol. 17, No. 1, pp. 44-52 (2004).
57. Cyteval, C., Thomas, E., Picot, M. C., Derieffy, P., Blotman, F., and Taourel, P., "Normal vertebral body dimensions: a new measurement method using MRI," Osteoporosis International, Vol. 13, No. 6, pp. 468-473 (2002).
58. Athiviraham, A., Yen, D., Scott, C., and Soboleski, D., "Clinical correlation of radiological spinal stenosis after standardization for vertebral body size," Clinical Radiology, Vol. 62, No. 8, pp. 776-780 (2007).
59. Benzel, E. C., Biomechanics of Spine Stablilzation, American Association of Neurological Surgeons, Illinois, pp.1-17(2001).
60. Panjabi, M. M. P., Takata, K. M., Goel, V. P., Federico, D. M., Oxland, T. M., Duranceau, J. M., et al., "Thoracic Human Vertebrae Quantitative Three-Dimensional Anatomy," Spine, Vol. 16, No. 8, pp. 888-901 (1991).
61. White A.A., & M.M., P. (Eds.). (1990). Clinical Biomechanics of the Spine. Philadelphia: Lippincott
62. Berry, J. L. M., Moran, J. M. D., Berg, W. S. B., and Steffee, A. D. M., "A Morphometric Study of Human Lumbar and Selected Thoracic Vertebrae," Spine, Vol. 12, No. 4, pp. 362-367 (1987).
63. Krag, M. H. M., Weaver, D. L. M., Beynnon, B. D. M., and Haugh, L. D., "Morphometry of the Thoracic and Lumbar Spine Related to Transpedicular Screw Placement for Surgical Spinal Fixation," Spine, Vol. 13, No. 1, pp. 27-32 (1988).
64. Zindrick, M. R. M., Wiltse, L. L. M., Doornik, A. M., Widell, E. H. M., Knight, G. W. M., and Patwardhan, A. G. P., et al., "Analysis of the Morphometric Characteristics of the Thoracic and Lumbar Pedicles," Spine, Vol. 12, No. 2, pp. 160-166 (1987).
65. Baroud, G., Nemes, J., Heini, P., and Steffen, T., "Load shift of the intervertebral disc after a vertebroplasty: a finite-element study," European Spine Journal, Vol. 12, No. 4, pp. 421-426 (2003).
66. Kong, W. Z. P., and Goel, V. K. P., "Ability of the Finite Element Models to Predict Response of the Human Spine to Sinusoidal Vertical Vibration," Spine, Vol. 28, No. 17, pp. 1961-1967 (2003).
67. Pitzen, T., Geisler, F. H., Matthis, D., Muller-Storz, H., Pedersen, K., and Steudel, W. I., "The influence of cancellous bone density on load sharing in human lumbar spine: a comparison between an intact and a surgically altered motion segment," European Spine Journal, Vol. 10, No. 1, pp. 23-29 (2001).
68. Sairyo, K., Goel, V. K., Masuda, A., Vishnubhotla, S., Faizan, A., and Biyani, A., et al., "Three-dimensional finite element analysis of the pediatric lumbar spine. Part I: pathomechanism of apophyseal bony ring fracture," European Spine Journal, Vol. 15, No. 6, pp. 923-929 (2006).
69. Goto, K., Tajima, N., Chosa, E., Totoribe, K., Kubo, S., and Kuroki, H., et al., "Effects of lumbar spinal fusion on the other lumbar intervertebral levels (three-dimensional finite element analysis)," Journal of Orthopaedic Science, Vol. 8, No. 4, pp. 577-584 (2003).
70. Chen, C., “A finite element study of the biomechanical behavior of the nonliear ligamentous thoracic and lumbar Spine.” National Cheng Kung University, Dissertation of Master Degree. ,Tainan (2007).
71. Kim, Y., "Prediction of mechanical behaviors at interfaces between bone and two interbody cages of lumbar spine segments," Spine, Vol. 26, No. 13, pp. 1437-1442 (2001).
72. Rohlmann, A. D.I., Neller, S. D.I., Claes, L. P., Bergmann, G. D.I., and Wilke, H.J. P., "Influence of a Follower Load on Intradiscal Pressure and Intersegmental Rotation of the Lumbar Spine," Spine, Vol. 26, No. 24, pp. E557-E561 (2001).
73. Tsantrizos, A. M., Baramki, H. G. M. D. P., Zeidman, S. M. D., and Steffen, T. M. D. P. M. B. A., "Segmental Stability and Compressive Strength of Posterior Lumbar Interbody Fusion Implants," Spine, Vol. 25, No. 15, pp. 1899-1907 (2000).
74. Patwardhan, A. G. P., Havey, R. M. B. S., Meade, K. P. P., Lee, B. B. S., and Dunlap, B. B. S., "A Follower Load Increases the Load-Carrying Capacity of the Lumbar Spine in Compression," Spine, Vol. 24, No. 10, pp. 1003 (1999).
75. Ebbesen, E. N., Thomsen, J. S., Beck-Nielsen, H., Nepper-Rasmussen, H. J., and Mosekilde, L., "Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing," Bone, Vol. 25, No. 6, pp. 713-724 (1999).
76. Rohlmann, A., Zander, T., Bergmann, G., and Rohlmann, A., "Comparison of the biomechanical effects of posterior and anterior spine-stabilizing implants," European Spine Journal, Vol. 14, No. 5, pp. 445-453 (2005).
77. Tsantrizos, A., Baramki, H. G., Zeidman, S., and Steffen, T., "Segmental stability and compressive strength of posterior lumbar interbody fusion implants," Spine, Vol. 25, No. 15, pp. 1899-1907 (2000).
78. 李輝煌,田口方法--品質設計的原理與實務,第三版,高立圖書有限公司,台北 (2008).
79. Hou, S. M., Hsu, C. C., Wang, J. L., Chao, C. K., and Lin, J., "Mechanical tests and finite element models for bone holding power of tibial locking screws," Clin Biomech, Vol. 19, No., pp. 738-745 (2004).
80. Chao, C. K., Hsu, C. C., Wang, J. L., and Lin, J., "Increasing bending strength of tibial locking screws: Mechanical tests and finite element analyses," Clin Biomech, Vol. 22, No. 1, pp. 59-66 (2007).
81. 徐慶琪,骨螺絲之結構設計與生物力學分析,國立台灣科技大學, 博士論文,台北(2005)。
82. Hsu, W.H., H., Chao, C. K., Hsu, H.C., H., Lin, J., and Hsu, C.C., "Parametric study on the interface pullout strength of the vertebral body replacement cage using FEM-based Taguchi methods," Medical engineering & physics, Vol. 31, No. 3, pp. 287-294 (2009).
83. Dietl, R. H. J., Krammer, M., Kettler, A., Wilke, H.J., Claes, L., and Lumenta, C. B., "Pullout test with three lumbar interbody fusion cages," Spine, Vol. 27, No. 10, pp. 1029-1036 (2002).
84. Tan, J.S., Bailey, C. S., Dvorak, M. F., Fisher, C. G., Cripton, P. A., and Oxland, T. R., "Cement augmentation of vertebral screws enhances the interface strength between interbody device and vertebral body," Spine, Vol. 32, No. 3, pp. 334-341 (2007).
85. Patwardhan, A. G., Havey, R. M., Carandang, G., Simonds, J., Voronov, L. I., and Ghanayem, A. J., et al., "Effect of compressive follower preload on the flexion-extension response of the human lumbar spine," Journal of Orthopaedic Research, Vol. 21, No. 3, pp. 540-546 (2003).
86. Hillier, M. L., Bell, L. S., Hillier, M. L., and Bell, L. S., "Differentiating human bone from animal bone: a review of histological methods," Journal of Forensic Sciences, Vol. 52, No. 2, pp. 249-263 (2007).
87. Riley, L. H., 3rd, Eck, J. C., Yoshida, H., Koh, Y. D., You, J. W., and Lim, T. H., et al., "A biomechanical comparison of calf versus cadaver lumbar spine models," Spine, Vol. 29, No. 11, pp. E217-220 (2004).
88. Hollowell, J. P., Vollmer, D. G., Wilson, C. R., Pintar, F. A., and Yoganandan, N., "Biomechanical analysis of thoracolumbar interbody constructs. How important is the endplate?," Spine, Vol. 21, No. 9, pp. 1032-1036 (1996).

QR CODE