簡易檢索 / 詳目顯示

研究生: 林睿文
Ruei-Wun Lin
論文名稱: TDPS: Track Data Placement Strategy to Alleviate Rewrite Overhead for Interlaced Magnetic Recording
TDPS: Track Data Placement Strategy to Alleviate Rewrite Overhead for Interlaced Magnetic Recording
指導教授: 謝仁偉
Jen-Wei Hsieh
口試委員: 謝仁偉
Jen-Wei Hsieh
陳雅淑
Ya-Shu Chen
張原豪
Yuan-Hao Chang
吳晉賢
Chin-Hsien Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 30
外文關鍵詞: IMR, Interlaced Magnetic Recording
相關次數: 點閱:162下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Hard disk driver (HDD) 因為有著低成本低錯誤率的原因,因此在storage market中佔有一席之地。然而,Conventional Magnetic Recording(CMR)在提高areal density的方面因受到superparamagnetic effect的限制,目前已達到瓶頸。最近新型的track layout為Interlaced Magnetic Recording (IMR),IMR透過交錯重疊track的方式以達到更高的areal density。在IMR中,可以自由的寫入top track,而寫入bottom track時,由於會破壞相鄰top tracks中的資料,需要透過Read-Modify-Write (RMW) process以確保資料的完整性。然而,RMW process不但會增加write amplification以也造成performance overhead,尤其當bottom track中存有hot data時,RMW process所造成的overhead將會更加嚴重。本篇論文提出Track Data Placement Strategy(TDPS),將較頻繁更新的資料分配至top track,以降低RMW process所造成的overhead。Track Allocator將write request size較小的新資料分配至top tracks,Track Data Migrator在合適的時間點搬移clod track data至bottom tracks,以及搬移hot track data至top tracks。我們在IMR模擬器中實現TDPS以及TrackLace,並使用real world I/O trace以評估TDPS的效能。經實驗表明,與TrackLace相比,TDPS減少write amplification 22.0%,減少write latency 28.0%。


    摘要 1 目錄 2 圖目錄 3 表目錄 4 第一章 Introduction 5 第二章 Background and Motivation 7 2.1 Background 7 2.2 Motivation 8 第三章 Track Data Placement Strategy 9 3.1 Overview 9 3.2 Track Marker 10 3.3 Track Allocator 11 3.4 Track Data Migrator 15 3.5 Address Mapping 18 第四章 Performance Evaluation 22 4.1 Experimental Setup 22 4.2 Experimental Results 23 4.2.1 Write Amplification 23 4.2.2 Latency 26 第五章 Conclusion 29 參考文獻 References 29

    [1] R. Wood, M. Williams, A. Kavcic and J. Miles, "The Feasibility of Magnetic Recording at 10 Terabits Per Square Inch on Conventional Media," in IEEE Transactions on Magnetics, vol. 45, no. 2, pp. 917-923, Feb. 2009, doi: 10.1109/TMAG.2008.2010676.

    [2] A. Aghayev, M. Shafaei, and P. Desnoyers, “Skylight—a window on
    shingled disk operation,” ACM Transactions on Storage (TOS), vol. 11,
    no. 4, p. 16, 2015.

    [3] C. Ma, Z. Shen, J. Wang, Y. Wang, R. Chen, Y. Guan, and Z. Shao, “Tiler: An autonomous region-based scheme for smr storage,” IEEE Transactions on Computers, vol. 70, no. 2, pp. 291–304, 2021.

    [4] W. He and D. H. Du, “Smart: An approach to shingled magnetic recording translation,” in 15th fUSENIXg Conference on File and Storage Technologies (fFASTg 17), 2017, pp. 121–134.

    [5] S. Granz et al., "Areal Density Comparison Between Conventional, Shingled, and Interlaced Heat-Assisted Magnetic Recording With Multiple Sensor Magnetic Recording," in IEEE Transactions on Magnetics, vol. 55, no. 3, pp. 1-3, March 2019, Art no. 3100203, doi: 10.1109/TMAG.2018.2869046.

    [6] F. Wu et al., "TrackLace: Data Management for Interlaced Magnetic Recording," in IEEE Transactions on Computers, vol. 70, no. 3, pp. 347-358, 1 March 2021, doi: 10.1109/TC.2020.2988257.

    [7] M. H. Hajkazemi, A. N. Kulkarni, P. Desnoyers, and T. R. Feldman, “Track-based translation layers for interlaced magnetic recording,” in 2019 fUSENIXg Annual Technical Conference (fUSENIXgfATCg 19), 2019, pp. 821–832.

    [8] Y. Liang and M. -C. Yang, "Move-On-Modify: An Efficient yet Crash-Consistent Update Strategy for Interlaced Magnetic Recording," 2021 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 2021, pp. 97-102, doi: 10.1109/DAC18074.2021.9586091.

    [9] L. -P. Chang, "A Hybrid Approach to NAND-Flash-Based Solid-State Disks," in IEEE Transactions on Computers, vol. 59, no. 10, pp. 1337-1349, Oct. 2010, doi: 10.1109/TC.2010.14.

    [10] “Msr cambridge block i/o traces.” [Online]. Available: http://iotta.snia.org/traces/388

    無法下載圖示 全文公開日期 2025/08/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2025/08/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE