簡易檢索 / 詳目顯示

研究生: 杭宣佑
Xuan-You Hang
論文名稱: 寬鎖頻範圍鎖定除四除頻器與低功耗相位雜訊壓控震盪器之研究
Design of wide locking range divide-by-4 LC injection-locked frequency divider and Low-Power and Low-Phase Noise Voltage-Controlled Oscillator
指導教授: 徐敬文
Ching-Wen Hsue
張勝良
Sheng-Lyang Jang
口試委員: 馮武雄
none
黃進芳
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 95
中文關鍵詞: 壓控振盪器注入鎖定除頻器
外文關鍵詞: voltage-controlled oscillator, injection-locked frequency divider
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文提出了三個電路,第一個是一個寬鎖頻範圍鎖定除四除頻器,第二是一個低電壓相位雜訊壓空震盪器,最後是一個合併雙頻注入鎖定除二除頻器,三者皆使用了標準台積電0.18微米製程去實現。
    在大範圍鎖定除四除頻器中,此電路包含由兩個N型金氧半電晶體交錯耦合對為中心所組成的壓控振盪器以及一個用來注入訊號的N型金氧半電晶體並聯共振腔電感所組成。量測結果顯示在注入訊號0 dBm時,其鎖定範圍是從12.3 GHz 到 15.5 GHz,而其消耗功率在供應電壓1.5 V之下只有13.87 mW。
    在低電壓相位雜訊壓控震盪器裡,在供應電壓0.7V時,振盪器在6.1GHz時相位雜訊為-119.72dBc/Hz,FOM是-192.41dBc/Hz.功耗為1.242 mW.可調範圍由6.13到6.31GHz可調電壓由0V到0.8V.此壓控振盪器由台積電0.18製程晶片面積為0.937 1.031 。
    在合併雙頻注入鎖定除二除頻器中,此電路包含由兩個N型金氧半電晶體交錯耦合對為中心所組成的壓控振盪器以及一個用來注入訊號的N型金氧半電晶體並聯共振腔電感所組成。量測結果顯示在注入訊號0 dBm時,其鎖定範圍是從3.7 GHz 到 10.5 GHz,而其消耗功率在供應電壓1.15 V之下只有6.785 mW。


    This thesis presents three injection locked frequency dividers, the first one is a Divide by 4 ILFD, the second one is a low-phase noise VCO and the final one is a wide locking range divide-by-2 LC injection-locked frequency divider, these circuits are implemented by using 0.18um CMOS process.
    In A wide locking range divide-by-4 LC injection-locked frequency divider (ILFD), the circuit was implemented in the TSMC 0.18μm 1P6MCMOS process. The divide-by-4 ILFD uses a class-C capacitive cross-coupled voltage-controlled oscillator (VCO) with one direct injection MOSFET.
    In A low-phase noise oscillator. The oscillator uses a capacitive cross-coupled nMOSFET pair in shunt with the LC-resonator. The varactors in series with two inductors are used to set the oscillation frequency, the voltage swing across a pair of back-to-back varactors is small, this leads to less AM-PM conversion and low phase noise.
    In a wide locking range divide-by-2 LC injection-locked frequency divider (ILFD) was implemented in the TSMC 0.18 μm 1P6M CMOS process. The divide-by-2 ILFD uses a capacitive cross-coupled voltage-controlled oscillator (VCO) with one direct injection MOSFET. The dc gate bias of cross-coupled FETs is smaller than dc drain bias. At the drain-source bias of 1.15 V, and at the incident power of 0 dBm the locking range of the divide-by-2 ILFD is 5.2 GHz, from the incident frequency 4.1 GHz to 9.3 GHz, the percentage is 77.6%. The core power consumption is 6.785 mW. The die area is 1.058 × 0.862 mm2.

    中文摘要 I ABSTRACT II 誌謝 III TABLE OF CONTENTS IV LIST OF FIGURES VI LIST OF TABLES XI CHAPTER 1 INTRODUCTION 1 CHAPTER 2 THE PRINCIPLE OF OSCILLATORS 6 2.1 BASIC THEORY OF OSCILLATORS 6 2.1.1 Two-Port (Feedback) View 6 2.1.2 One-Port (Negative Resistance) View 8 2.2 QUALITY FACTOR 10 2.3 PHASE NOISE 13 2.3.1 Defination of The Phase Noise 13 2.3.2 Power and FOM 18 2.4 ON-CHIP VARACTORS 19 2.4.1 Diode Varactor 19 2.4.2 MOS Varactor 20 2.5 ON CHIP INDUCTORS 24 2.5.1 Spiral Inductor 25 2.5.2 The Transformer 31 2.6 THE POPULAR RESONATOR 36 2.6.1 Single Transistor Oscillator 38 2.6.2 Cross-Coupled Oscillator 40 2.6.3 Complementary Cross-Coupled Topology 42 2.7 PARAMETERS OF VCO’S 44 CHAPTER 3 DESIGN OF INJECTION LOCKED FREQUENCY DIVIDER 49 3.1 PRINCIPLE OF INJECTION LOCKED FREQUENCY DIVIDER 50 3.1.1 Locking Range 52 3.1.2 Direct ILFD 55 CHAPTER 4 LOW-VOLTAGE WIDE LOCKING RANGE INJECTION LOCKED FREQUENCY DIVIDER 57 4.1 INTRODUCTION 57 4.2 CIRCUIT DESIGN 60 4.3 MEASUREMENT AND DISCUSSION 63 4.4 CONCLUSION 68 CHAPTER 5 A LOW-POWER AND LOW-PHASE NOISE N-CORE VOLTAGE-CONTROLLED OSCILLATOR 69 5.1 INTRODUCTION 69 5.2 CIRCUIT DESIGN 70 5.3 MEASUREMENT AND DISCUSSION 74 5.4 CONCLUSION 77 CHAPTER 6 DESIGN OF DUAL-BAND VOLTAGE-CONTROLLED OSCILLATOR USING SWITCHED ACTIVE CORE 78 6.1 INTRODUCTION 78 6.2 DESIGN OF CIRCUIT 79 6.3 EXPERIMENTAL RESULTS AND DISCUSSION 81 6.4 CONCLUSION 86 REFERENCES 87

    [1]J. Roggers, C. Plett, Radio frequency integrated circuit design, Artech House, 2003
    [2]B. Razavi, RF microelectronics, Prentice Hall PTR, 1998.
    [3]B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, pp. 331-343, 1996
    [4]D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329-330, Feb. 1966.
    [5]A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
    [6]T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
    [7]A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717-724, May 1999.
    [8]J. N. Burghartz, “Integrated RF and microwave components in BiCMOS technology,” IEEE Trans. Electron Devices, vol. 43, no. 9, pp. 1559-1570, 1996.
    [9]Svelto, F. Erratico, P. Manzini, S. Castello, R. Dipt. di Ingegneria, Univ. di Bergamo, Dalmine, “A metal-oxide-semiconductor varactor,” IEEE Electron Device Lett., vol. 20, no. 4, pp. 164-166, Apr. 1999.
    [10]P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCO’s,” IEEE J. Solid-State Circuits, vol. 35, pp. 905-910, June. 2000.
    [11]R. L. Bunch, S. Raman, “Large signal analysis of MOS varactors in CMOS -Gm LC VCOs,” IEEE J. Solid-State Circuits, vol. 38, pp. 1325-1332, 2003
    [12]J. Aguilera, and R. Berenguer, “Design and test of integrated inductors for RF applications,” Kluwer Academic Publishers, 2004.
    [13]J. Craninckx, and M. S. J. Steyaert, “A fully integrated CMOS DCS-1800 frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2054-2065, 1998.
    [14]Y. K. Koutsoyannopoulos and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Trans. Circuits and System-II, vol. 47, no. 8, pp. 699-713, 2000.
    [15]A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, Apr. 2001.
    [16]Y. Koutsoyannopoulos, “Novel Si integrated inductor and transformer structure for RF IC design,” Proc. ISCAS , vol. 2, pp. 573-576, June. 1999.
    [17]C. Tang, C. Wu, and S. Liu, “Miniature 3-D inductors in standard CMOS process,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 471-480, 2002
    [18]H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Trans. on Parts, Hybrids and Packaging, vol. PHP-10, no.2, pp. 101-109, 1974.
    [19]J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
    [20]A. Hajimiri, and T. H. Lee, “The design of low noise oscillators,” Kluwer Academic Publishers, 1999.
    [21]B. De Muer, M. Borremans, M. Steyaert, and G. Li Puma, “A 2-GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, July. 2000.
    [22]S . Levantino, C. Samori, A. Bonfanti, S.L.J. Gierkink, A.L. Lacaita, and V. Boccuzzi, “ Frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise upconversion ” IEEE J. Solid-State
    [23]J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulusdivide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits,vol. 31, pp. 890-897, July 1996.
    [24]Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31,pp. 456-463, Mar. 1996.
    [25]J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [26]H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequencydividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [27]H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers,pp. 412-413, Feb. 2001.
    [28] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider
    up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits
    Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [29] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS
    injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits,
    pp. 47-50, June 2001.
    [30] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection locking
    scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol.
    37, pp. 845-851, July 2002.
    [31] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked
    dividers in 0.25μm CMOS technology,” IEEE European Solid State Circuits
    Conference (ESSCIRC), pp. 89-92, Sept. 2002.
    [32] H. Wu, “Signal generation and processing in high-frequency/high-speed
    siliconbased integrated circuits,” PhD thesis, California Institute of Technology, 2003.
    [33] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61,
    pp.1380-1385, Oct. 1973.
    [34]W. Chen, and C. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25μm CMOS Technology” European Solid-State Circuits Conf. pp. 89- 92, Sept. 2002.
    [35]S. H. Lee, S. L. Jang, and Y. H. Chung, “A low voltage divide-by-4injection locked frequency divider with quadrature outputs,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 5, pp. 373–375, May 2007.
    [36]K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injectionlockeddivider,” in IEEE Int. Solid-State Circuits Conf. Dig.,pp. 2472–2481, Feb. 2006.
    [37]S.-L. Jang,C. C. Liuand C.-W. Chung,” A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol.19,no. 4,pp. 236-238, April 2009.
    [38]Z.-D. Huang, C.-Y. Wu, and B.-C. Huang, “Design of 24-GHz 0.8-V1.51-mW coupling current-mode injection-locked frequency dividerwith wide locking range,” IEEE Trans. Microw. Theory Techn., vol.57, no. 8, pp. 1948–1958, Aug. 2009.
    [39]S.-L. Jang, L.-Y. Tsai and C.-F. Lee, ” A CMOS switched resonator frequency divider tuned by the switch gate bias,” Microwave and Optical Technology Lett.,Vol. 50, no. 1, pp.222-225, Jan. 2008.
    [40]L. Wu and H. C. Luong, ”Analysis and design of a 0.6 V 2.2 mW 58.5-to-72.9 GHz divide-by-4 injection-locked frequency divider with harmonic boosting’, IEEE Trans. Circuits and Systems-Part I, Regular Papers, vol. 60, no. 8, pp. 2001-2008, Nov. 2013.
    [41]Y.-H. Kuo, et al., “Design and analysis of a 77.3% locking-range divide-by-4 frequency divider,”IEEE Trans. Microw. Theory Tech., vol. 59, no. 10, pp. 2477-2485, Oct. 2011.
    [42]A. Musa, K. Okada, and A. Matsuzawa, “Progressive mixing technique to widen the locking range of high division-ratio,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 3, pp. 1161-1173, Mar. 2013.
    [43]S.-L. Jang, C.-H. Liu, C.-W. Chang, and M.-H. Juang," A low voltage, low power divide-by-4 LC-tank injection-locked frequency divider, " Int. J. Electronics., vol. 98,no. 4, pp. 521-527, April 2011.
    [44]M.-C. Chuang, J.-J.Kuo, C.-H.Wang, and H. Wang, ”A 50 GHz divide-by-4 injection lock frequency divider using matching method’, IEEE Microw.Wireless Compon. Lett., vol. 18, pp. 344–346, May 2008.
    [45]S.-L. Jang, and C.-C. Fu. ” Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers’, Analog Integr Circ Sig Process, vol. 78, issue 2, pp. 523–528, Feb. 2014., Feb. 2014.
    [46] A. Hajimiri and T. Lee, “Design issues in CMOS differential LCoscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp.717-724, May 1999.
    [47] P. Andreani, X. Wang, L. Vandy, and A. Frad, “A study of phase noise in Colpitts and LC-tank CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1107-1118, May. 2005.
    [48] A. Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS oscillators withs witched tuning”, Proc. IEEE Custom Integr. Circuits Conf., (1998), pp. 555–558.
    [49] J. Kim, J. Shin, S. Kim, et al., “A wide-band CMOS LC VCO with linerized coarse tuning characteristics,” in IEEE Trans Circuits Syst, (2008), pp.399-403.
    [50] A. Bonfanti, S. Levantino, C. Samori, and A. L. Lacaita, “A varactorconfiguration minimizing the amplitude-to-phase noise conversion inVCOs,”IEEE Trans. Circuits Syst. I, vol. 53, no. 3, pp. 481–488, Mar.2006.
    [51] M. D. Wei, S. Chang, Y. Yang, "A CMOS backgate-coupled QVCO based on back-to-back series varactor configuration for minimal AM-to-PM noise conversion ", IEEE Microw. Wireless Compon. Lett., pp. 320 - 322, (2009).
    [52] H. Kim, S. Ryu, Y. Chung, J. Choi, and B. Kim, “A low phase-noise CMOS VCO with harmonic tuned LC tank,” IEEE Trans. Microwave Theory and Techniques, vol. 54, no. 7, pp. 2917-2924, Jul. 2006.
    [53] Y.-H. Chuang, S.-L. Jang, S.-H. Lee, R.-H. Yen and J.-J. Jhao, “5 GHz low power CMOS differential Armstrong VCOs with balanced current-reused topology ,” IEEE Microw. Wireless Compon. Lett., pp. 139-141, Feb. 2007.
    [54] M.-D. Tsai, Y.-H. Cho and H. Wang,“A 5-GHz low phase noise differential colpitts CMOS VCO,”IEEE Microwave Wireless Compon. Lett., vol. 15, no 5, pp. 327-329, May 2005.
    [55] S.-L. Jang, C.-C. Liu, C.-Y. Wu, and M.-H. Juang, ”A 5.6GHz low power balanced VCO in 0.18μm CMOS,” IEEE Microw. Wireless Compon. Lett.,pp. 233-235, April, 2009.
    [56] S.-L. Jang, Y.-J. Song, and C.-C. Liu,” A differential Clapp VCO in 0.13µm CMOS technology,” IEEE Microw. Wireless Compon. Lett., pp. 404-406, June, 2009.
    [57] T.-P. Wang and Y.-M. Yan,” A low-voltage low-power wide-tuning-rangehybrid Class-AB/Class-B VCO with robust start-up and high-performance FOMT,”IEEE Trans. Microw. Theory Techn., vol. 62, no. 3, pp. 521–530, March, 2014.
    [58] J.-P. Hong and S.-G. Lee,“Gm-boosted differential drain-to-source feedback Colpitts CMOS VCO,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 7, pp.1811 –1821, July, 2011.
    [59] C. Y. Yang, C. H. Chang, J. M. Lin, and J. H.Weng, “A 0.6 V 10 GHz CMOS VCO using negative-Gm back-gate tuned technique,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 3, pp. 163–165, Mar.2011.
    [60] P. K. Tsai, C. Y. Liu, and T. H. Huang, “A CMOS voltage controlled oscillator and frequency tripler for 22–27 GHz local oscillator generation,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 9, pp.492–494, Sep. 2011.
    [61] W. Deng, K. Okada and A. Matsuzawa, “Class-C VCO with amplitude feedback loop for robust start-up and enhanced oscillation swing,” IEEE J. Solid-State Circuits, vol. 48, no. 2, Feb. 2013.
    [62]M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits,vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
    [63]K. Yamamoto and M. Fujishima, “55GHz CMOS frequency dividerwith 3.2GHz locking range” ESSCC, pp. 135-138, Aug., 2004.
    [64]H. Wu and A. Hajimiri, “A 19 GHz 0.5mW 0.35 μm CMOS frequencydivider with shunt-peaking locking-range enhancement,” in IEEE Int.Solid-State Circuits Conf., pp. 412-413, Feb. 2001.
    [65]Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
    [66]S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, October 2013.
    [67]S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J.-F. Huang," Injection-locked frequency divider using injection mixer DC-biased in sub-threshold," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, March 2015.
    [68]C.-W. Chang, S.-L. Jang, C.-W. Huang, and C.-C. Shih, " Dual-resonance LC-tank frequency divider implemented with switched varactor bias,” IEEE Int. VLSI- DAT, pp.1-4, 2011.
    [69]S.-L. Jang, C.-W. Chang, J.-Y. Wun, and M.-H. Juang, ” Quadrature injection-locked frequency dividers using dual-resonance resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 37-39, Jan. 2011
    [70]H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, June 1999.
    [71]J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2003, pp. 259–262.
    [72]S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang,” LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008.
    [73]S. Lee, S. Jang, and C. Nguyen, “Low-power-consumption wide-locking-range dual-injection-locked 1/2 divider through simultaneous optimization of VCO loaded Q and current,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3161–3168, Oct. 2012.
    [74]N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105-107, Feb 2014.
    [75]S.-L. Jang, F.-B. Lin,and J.-F. Huang, ” Wide-band divide-by-2 injection-locked frequency divider using MOSFET mixers DC-biased in subthreshold region,” Int. J. Circ Theor App, 12, Jan. 2015.

    無法下載圖示 全文公開日期 2020/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE