簡易檢索 / 詳目顯示

研究生: 黃馨玫
Shin-Mei Huang
論文名稱: 在隨機衝擊下之可自我恢復線性退化系統之最佳置換時機
Optimal Replacement Time for Linear-Deteriorating System with Self-Healing under Random Shocks
指導教授: 葉瑞徽
Ruey Huei Yeh
口試委員: 王福琨
Fu-Kwun Wang
曾世賢
Shih-Hsien Tseng
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 58
中文關鍵詞: 線性退化系統自我恢復力置換門檻期望總成本率
外文關鍵詞: linear-deteriorating system, self-healing, replacement threshold, expected total cost rate
相關次數: 點閱:209下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自我恢復力之概念啟發於生物機制,意即當生物受到之衝擊時,之後,在一定時間內恢復至健康狀態。近年來關於自我恢復力之概念已在電機、航太與運輸等其他工程領域中受到越來越多的關注,如金屬化薄膜電容、具有自我修復之材料等等。傳統上,對於系統設備的失效大多定義為受到的衝擊超過界限值,鮮少針對在系統具備自我恢復力之前提下探討相應之維修或置換策略。故本論文在線性退化系統具備自我恢復力之情況下,以系統退化狀態與置換門檻取代傳統失效率來描述系統狀態,並建構系統的期望成本率模式。模式中,系統不只受到自身退化影響,也面臨外在隨機衝擊,造成系統狀態效能越來越差,為了減少日益變差之系統效能所造成額外成本,所以當系統狀態退化至某一門檻時進行系統置換的動作。根據期望成本率模式,本論文進一步探討退化系統在不同狀態與外在隨機衝擊之下之最佳置換時機與成本模式,以及當忽略系統自我恢復力之置換策略對最佳置換門檻與期望總成本率之影響。


    The concept of self-healing is initiated from biology mechanism, which means a creature will recover to healthy status while suffering shocks. In the recent year, self-healing has attracted much attention in engineering field. For instance, metalized thin film capacitors repair electrical conductivity to avoid short and the self-resilience material for airplanes repairs the damaged surface by themselves. Traditionally, the failures of systems have been considered as suffering random shocks only, but no damage self-healing phenomenon has been considered. Therefore, this paper constructs an expect total cost rate model for a linear-deteriorating system, which has self-healing capability under random shocks. In this model, the system performance is affected by not only degradation but also random shocks. In order to reduce the excessive cost caused by worse performance, system will be replaced while the system status exceeds a replacement threshold. This paper investigates the optimal replacement strategy for the linear-deteriorating system with self-healing under random shocks, so that the expected total cost rate is minimized. Finally, some numerical examples are given to analyze the impact of the self-healing capability on the expected total cost rate.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景與目的 1 1.2 研究範圍與架構 2 第二章 文獻探討 3 2.1 系統維修 3 2.2 置換策略 5 2.3 自我恢復力 5 第三章 數學模式 8 3.1 系統描述 8 3.2 符號定義 11 3.3 模式假設 12 3.4 退化系統狀態在不同情境下之演變過程 12 3.5 不同系統狀態組合下之成本模式 15 第四章 最佳置換策略 19 4.1 純退化下之系統狀態置換策略 19 4.2 隨機衝擊下,純退化系統耗損狀態置換策略 20 4.3 隨機衝擊下,具瞬時恢復下之系統耗損狀態置換策略 20 4.4 隨機衝擊下,具滯留恢復下之系統耗損狀態置換策略 21 4.5 系統最佳置換時機之錯置 22 第五章 數值分析 26 5.1 參數設定 26 5.2 系統狀態為僅考量自身退化之最佳置換時機 26 5.3 在隨機衝擊下退化系統狀態之最佳置換時機 27 5.4 在隨機衝擊下之具瞬時恢復退化系統之最佳置換時機 28 5.5 在隨機衝擊下之具滯留恢復退化系統之最佳置換時機 29 5.6 系統最佳置換時機錯置於不同的系統狀態 30 5.6.1 具瞬時恢復之退化系統遭受隨機衝擊最佳置換門檻,錯置於其他系統狀態 31 5.6.2 具滯留恢復之退化系統受隨機衝擊最佳置換時機門檻,錯置於其他系統狀態 32 5.7 敏感度分析 34 5.7.1 置換成本對不同退化系統之最佳置換時機影響 34 5.7.2 系統退化斜率對不同退化系統狀態之最佳置換時機影響 38 5.7.3 衝擊到達速率對不同退化系統狀態之最佳置換時機影響 40 第六章 結論與未來研究方向 44 6.1 結論 44 6.2 未來可研究方向 45 參考文獻 46

    [1] C. S. Holling, “Resilience and Stability of Ecological Systems”, Annual Review of Ecology and Systematics, Vol. 4, pp. 1-23, 1973.
    [2] F. Ren, T. Zhao, J. Jiao and Y. Hu, “Resilience Optimization for Complex Engineered Systems Based on the Nulti-Dimensional Resilience Concept,” IEEE, 2017.
    [3] 胡大瀛,災害下考量永續因素之運輸系統恢復力最佳化模型建立之研究,運輸計劃季刊,第四十五卷,第四期,277~300頁,2016。
    [4] 羅濟威,自修復材料介紹及其發展概況,取自10.6916/STPIRP.2016-09-23.0001。
    [5] 黃名霞,單向失效相依效應下雙零件之最佳置換策略,國立臺灣科技大學碩士論文,2019。
    [6] 翁御庭,在不同隨機衝擊量下系統之最佳置換時程,國立臺灣科技大學碩士論文,2020。
    [7] R. E. Barlow and L. C. Hunter, “Optimum Preventive Maintenance Policies,” Operational Research, 8-1, 90-100 ,1960.
    [8] T. Nakagawa and M. Kowada, “Analysis of a system with minimal repair and its application to replacement policy,” European Journal of Operational Research, 12, 176-182, 1983.
    [9] J. P. Jhang and S. H. Sheu, “Opportunity-based age replacement policy with minimal repair,” Reliability Engineering and System Safety, 64, 339-344, 1999.
    [10] Y. H. Chien and S. H. Sheu, “Extended optimal age-replacement policy with minimal repair of a system subject to shocks,” European Journal of Operational Research, 174-1, 169-181, 2006.
    [11] S. Wang, S. Zhang, Y. Li, H. Liu and Z. Peng, “Selective maintenance decision-making of complex systems considering imperfect maintenance,” International Journal of Performability Engineering, 14-12, 2960-2970, 2018.
    [12] R. E. Berg and B. Epstein, “Comparison of age, block and failure replacement policies,” IEEE Transactions on Reliability, 27-1, 25-29, 1978.
    [13] F. Beichelt, “A generalized block-replacement policy,” IEEE Transactions on Reliability, 30, 171-172, 1981.
    [14] S. Osaki, “Applied stochastic system modeling,” Springer, New York.
    [15] S. H. Sheu, “Extended block replacement policy of system subject to shocks,” IEEE Transactions on Reliability, 46, 375-382, 1997.
    [16] T. Nakagawa and S. Mizutani, “A summaryof maintenance policies for a finite interval,” Reliability Engineering and System Safety, 94, 89-96, 2009.
    [17] 王美崴,雙元件系統個別與群體置換之比較,中國工業工程學會學術研討會,2014。
    [18] Q. Zhou and Y. Sun, “Imperfect MaintenanceModel Study Based on Reliability Limitation,”MATEC Web of Conferences, 65, 1006, 2016.
    [19] K. Nakade and H. Mikuri, “Optimal maintenancepolicy of multiple parts with operating cost dependent on repair level,” Journal of Advanced Mechanical Design, Systems and Manufacturing, 10-3, 2016.
    [20] C. H. Huang and C. H. Wang, “A Time-Replacement Policy for Multistate Systems with Aging Components under Maintenance, from a Component Perspective,” Mathematical Problems in Engineering, 2019, 9651489, 2019.
    [21] T. Nakagawa, “Shock and Damage Models in Reliability Theory,” Springer, London, UK, 2007.
    [22] Y. Wang and H. Pham, “A Multi-Objective Optimization of Imperfect Preventive Maintenance Policy for Dependent Competing Risk Systems with Hidden Failure,” IEEE Transactions on Reliability, 60(4), 770-781, 2011.
    [23] Z. Wang, H-Z. Huang, Y. Li and N.-C. Xiao, “An approach to Reliability Assessment under Degradation and Shock Process,” IEEE Transactions on Reliability, 60(4), 852-863, 2011.
    [24] H. Peng, Q. Feng and D.W. Coit, “Reliability and Maintenance Modeling for System Subject to Multiple Dependent Competing Failure Processes,” IIE Transactions, 43(1), 12-22, 2011.
    [25] H. Liu, R.H. Yeh and B. Cai, “Reliability Modeling for Dependent Competing Failure Process of Damage Self-Healing Systems,” Computers & Industrial Engineering, 105, 55-62, 2017.

    QR CODE