簡易檢索 / 詳目顯示

研究生: 周文立
Wen-li Chou
論文名稱: 醋酸纖維素中空纖維膜之紡絲條件對其性能之影響
THE INFLUENCE OF SPINNING CONDITIONS ON THE PERFORMANCE OF CELLULOSE ACETATE HOLLOW FIBER MEMBRANES
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 王大銘
none
李正綱
none
楊禎明
none
賴君義
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 202
中文關鍵詞: 純水透過率醋酸纖維素中空纖維膜乾噴濕紡線上延伸倍率
外文關鍵詞: cellulose acetate hollow fiber membranes, dry jet-wet spinning, pure water permeability (PWP), on-line drawing ratio
相關次數: 點閱:460下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文係以探討醋酸纖維素中空纖維膜之紡絲條件對其性能之影響為研究目的。利用自行組裝之中空纖維抽絲裝置,將醋酸纖維素(cellulose acetate)溶於二甲基甲醯胺 (N,N-dimethylformamide, DMF)溶劑中以形成紡液(dope)後,藉由乾噴濕紡之技術,經由中空纖維紡嘴擠出,所成之初始中空纖維,導入凝固槽中將此纖維膜固化,而後利用捲取裝置將紡成之醋酸纖維素中空纖維膜捲取。紡絲條件對中空纖維膜之物性、型態、應用範圍及效能影響很大,而紡絲之條件很多且複雜。本研究則著重於探討線上延伸倍率、外凝固液溫度、外凝固液組成等紡絲條件之變化對中空纖維膜之內外表面型態、橫斷面型態、機械性質、熱性質及純水透過率及葡聚糖分子截留率之影響,並探討所紡之中空纖維膜在血液透析過程中去除β2-微球蛋白(β2-microglobubin)之可行性。
實驗結果顯示,以乾噴濕紡之技術方法紡出醋酸纖維素中空纖維膜是屬於較緻密之UF膜或較疏鬆RO級之中空纖維膜,若能適度提高凝固液溫度、延伸倍率、及凝固液組成,改變醋酸纖維素中空纖維膜之型態結構,以增進其不同領域中之應用或增近其分離或透過效能。
醋酸纖維素中空纖維膜常用於RO (reverse osmosis)作為海水淡化、血液透析或廢水之處理,但因醋酸纖維素常易受微生物之破壞而使其壽命縮短,因此,在紡絲液內加入硝酸銀,以探討銀離子在形成含銀之醋酸纖維素中空纖維膜經過長時間在水浴中浸漬過程及在實際純水透過之後在中空纖維膜表面及本體之奈米銀含量之變化,以及對大腸桿菌(E. coli)及黃金葡萄球菌 (S. aureus) 之抗菌或殺菌之效應以作為水處理之應用。實驗結果顯示,在紡液內加入適量硝酸銀可以將銀離子載入中空纖維內,並且將銀離子還原成奈米銀粒子,此不但不會影響原有之醋酸纖維素中空纖維之物性及效能,而且在長期使用中具有很好之抗菌及抑菌效果。硝酸銀之適當添加量為紡絲液之100~1000 ppm。


The main focus of this thesis is an influence of spinning conditions on the performance of asymmetric cellulose acetate (CA) hollow fiber membranes for water treatment and hemodialysis. The CA hollow fiber was spun via the dry jet-wet spinning technique. A homogenous spinning solution was prepared by adding CA powder to N,N-dimethylformamide (DMF) to form a dope. The dope was extruded through a hollow fiber spinneret. The influence of external coagulant compositions, external coagulant temperatures, and on-line drawing ratio on the morphology of inner skin, outer skin and cross-section, mechanical properties, thermal properties, pure water permeability (PWP), and retention of dextran of the resulting CA hollow fiber was investigated. The resulting CA hollow fiber was simulated for removing β2-microglobubin in the mass transfer experiments.
The resulting CA hollow fiber by the dry jet wet spinning technique showed a dense structure with low PWP. By increasing both external temperature and DMF content, the surface morphology and hence the permeation performance of hollow fiber membranes were greatly affected especially when the temperature was over 55°C and the DMF content was higher than 15%. The on-line draw ratio increased with the coagulant temperature and DMF content (in the range of 0 to 10%) in the external coagulant. The ultimate tensile strength (UTS) also increased when the fibers were coagulated in 5~10% DMF and at 70°C. The PWP increased with the DMF content of the coagulant and the coagulant temperature. The retention of dextran decreased with the increase of the DMF content in the coagulant and the coagulant temperature. Both inner and outer diameters of the hollow fiber decreased with the increase of take-up speed. Macrovoids were observed on the inner surface of the drawn hollow fibers. The d-space decreased with the increase of the take-up speed. The UTS increased and the breaking elongation decreased with the increase of take-up speed. The hydraulic permeability increased and the retention decreased slightly with the increase of the take-up speed. The surface roughness increased with the increase of the take-up speed. The thermal analysis results showed that the endothermic peak shifts to the higher temperature region and coefficient of thermal expansion (CTE) decrease for a higher take-up speed. When all these parameters were increased, the mass transfer and various physical properties of CA hollow fiber would be greatly changed and thus would be helpful for extending application.
In general, CA hollow fiber membrane was used desalination, hemodialysis, and water treatment. However, CA membrane is frequently damaged by microorganisms and lead to shorter life-span. To overcome this drawback, silver nitrate was added to the dope to produce silver-loading CA hollow fiber. The silver ions were reduced in the spinning dope into silver nano-particles. The residual silver contents in the bulk and on surface of Ag-loading hollow fiber after immersing in water bath for a specific period were measured. In addition, the residual Ag content of the Ag-loading hollow fiber was also measured after permeation experiment. The antibacterial activity against E. coli and S. aureus of Ag-loading hollow fiber was measured. The results show that the addtition of AgNO3 would rarely change the physical properties while maintaining the antibacterial activity for an extended period. After permeating with water for 5 d, the Ag content in the hollow fibers decreased, and did not show antibacterial activity against E. coli and S. aureus. Thus, Ag content must be periodically replenished after permeation. The proper range of AgNO3 in the spinning solution for CA hollow fiber should be about 100~1000 ppm.

摘要 I Abstract II Acknowledgement IV Table of Contents V NOMENCLATURE VIII Figure Captions XII Tables XV CHAPTER 1 Introduction 1 1.1 Introduction 1 1.2 References 6 CHAPTER 2 Background and Theory 8 2.1 The Membranes 8 2.1.1 Historical development of membrane 8 2.1.2 General concept of membranes 12 2.1.3 Type of membranes 13 2.1.4 Preparation of porous membranes by phase separation technique 16 2.1.5 Mechanism of membrane formation 22 2.2 Influence of various parameters on membrane morphology and Structure factor influencing membrane function 25 2.2.1 Influence of various parameters on membrane morphology 25 2.2.2 Structure factor influencing membrane function 27 2.2.3 Formation of macrovoids 30 2.3 The method of determining pore statistic 32 2.4 The theory of transport through membrane 37 2.4.1 Transport through porous membranes [65] 37 2.4.2 Transport of gases through porous membrane 39 2.4.3 Transport through nonporous membrane 40 2.4.4 The transport of asymmetric CA membranes for separation 41 2.5 Preparation and Application of polymer support 48 2.5.1 Membrane Processes 48 2.5.2 Osmosis 51 2.5.3 Application of membranes 52 2.6 Hollow fiber membranes 71 2.6.1 Advantages and Disadvantages of hollow Fibers 77 2.6.2 Modulus configurations of hollow fiber membrane 78 2.6.3 The application of hollow fiber membranes 81 2.6.4 Membrane processes of hollow fiber in biotechnology and biochemical industry 82 2.6.5 Permeability properties 83 2.6.6 Concentration polarization and fouling of hollow fiber 85 2.7 References 89 CHAPTER 3 Experimental 101 3.1 Materials 101 3.2 Spinning setup and Conditions 101 3.2.1 Spinning of asymmetric CA hollow fibers 101 3.2.2 Preparation of silver loading asymmetric CA hollow fiber and spinning condition 102 3.2.3 Preparation of hollow fiber modules 102 3.2.4 Silver content determination 102 3.3 Definition of draw ratio 102 3.4 Porosity determination 103 3.5 Determination of mechanical properties 104 3.6 Morphology studies 104 3.7 Ultrafiltration experiments 105 3.8 Thermal analysis 106 3.9 Wide-angle X-ray diffraction (WAXD) measurement 106 3.10 Halo test 107 3.11 Anti-bacteria test 107 3.12 Determination of soaking test, permeation test and hydraulic permeability 107 3.13 References 108 CHAPTER 4 Influence of coagulant temperature and on-line drawing on the mechanical properties and permeation performance of cellulose acetate hollow fibers 114 4.1 Introduction 114 4.2 Results and Discussion 116 4.2.1 The morphology 116 4.2.2 Porosity and shrinkage 116 4.2.3 Draw ratios 117 4.2.4 The mechanical properties 118 4.2.5 The pure water permeability and retention 119 4.2.6 Dimensions of hollow fiber 120 4.2.7 Morphology of inner surface and outer surface 120 4.3 Conclusions 121 4.4 References 123 CHAPTER 5 Effect of take-up speed on physical properties and permeation performance of cellulose acetate hollow fibers 135 5.1 Introduction 135 5.2 Results and Discussions 136 5.2.1 Effect of take-up speed on draw ratio, porosity and shrinkage 136 5.2.2 The effect of take-up speed on the dimension of the hollw fibers 137 5.2.3 The morphology of hollow fibers 138 5.2.4 The effect of take-up speed on the mechanical properties 139 5.2.5 The thermal properties 140 5.2.6 The effect of take up speed on the d-space by WAXD 141 5.2.7 The effect of take up speed on the surface characterization by AFM 141 5.2.8 The effect of take up speed on the pure water permeability and rejection 142 5.3 Conclusions 143 5.4 References 144 CHAPTER 6 Effect of coagulant temperature and composition on surface morphology and mass transfer properties of cellulose acetate hollow fiber membranes for hemodialysis 154 6.1 Introduction 154 6.2 Result and Discussion 155 6.2.1 The effect of coagulant temperature and composition on the surface morphology 155 6.2.2 The effect of coagulant temperature and composition on the surface roughness 157 6.2.3 The effect of coagulant temperature and DMF content on the mechanical properties of hollow fiber membranes 159 6.2.4 The effect of coagulant temperature and coagulant composition on the permeation 160 6.3 Conclusion 161 6.4 References 163 CHAPTER 7 The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment 180 7.1 Introduction 180 7.2 Result and discussion 181 7.2.1 Cross-section and surface morphology of CA hollow fiber 181 7.2.2 Variation of silver content due to soaking time and permeation 183 7.2.3 Anti-bacteria activity 187 7.3 Conclusion 188 7.4 References 189 CHAPTER 8 Overall Conclusion 201

Chapter 1
[1] U. Merten (Ed.), Desalination by Reverse Osmosis, MIT Press, Cambridge, 1966.
[2] C.E. Reid, Breton, J. Appl. Polym. Sci. 1 (1959) 133.
[3] C.E. Reid, J.R. Kuppers, J. Appl. Polym. Sci. 2 (1959) 264.
[4] R.L. Riley, J.O. Gardner, U. Merten, (1964) 801.
[5] U. Merten, Ind. Eng. Chem. Fundam. 2 (1963) 229.
[6] H.K. Lonsdale, U. Merten, R.L. Riley, J. Appl. Polym. Sci. 9 (1965)1341.
[7] H.K. Lonsdale, U. Merten, M. Tagami, J. Appl. Polym. Sci. 11 (1967) 1807.
[8] W.S.W. Ho, K.K. Sirkar (Eds.), Membrane Handbook, van Nostrand Reinhold, New York, (1992).
[9] M. Soltanieh, W.N. Gill, Chem. Eng. Commun. 12 (1981) 279.
[10] V.L. Punzi, G.P. Muldowney, Rev. Chem. Eng. 4 (1987) 1.
[11] W.J. Koros, G.K. Fleming, S.M. Jordan, T.H. Kim, H.H. Hoehn, Prog. Polym. Sci. 13 (1988) 339.
[12] B.S. Parekh, Reverse Osmosis Technology: Applications for High-purity-water Production, Marcel-Dekker, New York, (1988).
[13] D. Bhattacharyya, W.C. Mangum, M.E. Williams, Reverse osmosis, in: Kirk–Othmer Encyclo. Chem. Technol., vol. 21, 4th ed., John Wiley, New York, (1997), pp. 303–333.
[14] Gotch FA, Kidney Int 33 (1988) 100.
[15] Krivitski NM,. Kidney Int., 48 (1995) 244.
[16] Schmidt DF, Schniepp BJ, Kurtz SB, McCarthy JT, Am J Kidney Dise 17 (1991) 34.
[17] Cordis Dow Corp, Cellulose acetate hollow fibers. GB Pat. 2,000,722 (1979).
[18] D. Gustav, S. Lothar, A. Wolfgang, Dialysis membrane made of cellulose acetate. US Pat. 5,403,485, (1995).
[19] Teijin Ltd, Hollow fiber blood purifying membrane and process for producing the same. EP 0,697,242 (1996).
[20] S.A. Mckelvey, D.T. Clausi, W.J. Koros, J. Membr. Sci. 124 (1997) 223.
[21] T.S. Chung, S.K. Teoh, W.W.Y. Lau, M.P. Srinivasan, Ind. Eng. Chem. 37 (1998) 3930.
[22] O.M. Ekiner, G. Vassilatos, J. Membr. Sci. 53 (1990) 259.
[23] K. Ma, S. Sourirajan, W.W.Y. Lau, Sep. Sci. Technol. 30 (1995) 3025.
[24] A. Idris, M.Y. Noordin, A.F. Ismail, S.J. Shilton, J. Membr. Sci. 202 (2002) 205.
[25] J.J. Qin, T.S. Chung, J. Membr. Sci. 157 (1999) 35.
[26] T.S. Chung, E.R. Katchniski, J. Appl. Polym. Sci. 65 (1997) 1555.
[27] T.S. Chung, S.K. Teoh , X. Hu, J. Membr. Sci. 133 (1998) 161.
[28] T.S. Chung, E. R. Kafchinski, P. Foley, J. Membr. Sci. 75 (1992) 181.
[29] M. Henmi, T. Yoshioka, J. Membr. Sci. 85 (1993) 129.
[30] T.S. Chung, E.R. Kafchinski, R. Vora, J. Membr. Sci. 88 (1994) 21.
[31] X. Miao, S. Sourirajan, H. Zhang, W.W.Y. Lau, Sep. Sci. Technol, 31 (1996) 141.
[32] T.S. Chung, Z.L. Xu, W.H. Lin, J. Appl. Polym. Sci, 72 (1999) 379.
[33] T.S. Chung, X. Hu, J. Appl. Polym. Sci, 66 (1997) 1067.
[34] J.H. Kim, Y.I. Park, J. Jegal, K.H. Lee, J. Appl. Polym. Sci, 57 (1995) 1637.
[35] H. A. Tsai, D.H. Huang, S.C. Fan, Y.C. Wang, C. L. Li, K.R. Lee, J.Y. Lai, J. Membr. Sci., 198 (2002) 245.
[36] Z.L. Xu, F.A. Qusay, J. Membr. Sci., 233 (2004) 101.
[37] O.M. Ekiner and G. Vassilatos, Polymeric membranes, U.S. patent 5,102,600, E.I. Du Pont de Nemours and Co.,(1992).
[38] N. Ichiro, Cellulose acetate hollow fiber separation membrane. Japan Patent 6,343,842. (1994).
[39] N. Ichiro, N. Nobuyuki Cellulose acetate hollow-fiber separation membrane and its production, Japan Patent 8,108,053 (1996).
[40] S.W. Kang, J.H. Kim, D. Ko, C.K. Kim, J. Won, K. Char, Y.S. Kang. J. Polym. Sci. Part B: Polym.Phys.; 42( 2004) 3344.
[41] Q. L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, J. Biomedical Materials
Chapter 2
[1] Hamdani P. (1994), Membrane Technology: The Right Choice for ASEAN, UTM.
[2] P.A. Schweitzer, Handbook of Separation Technique for Chemical Engineers, 2nd Edition, McGraw Hill. (1988).
[3] Ruthven DM, Encyclopedia of Separation Technology, John Wiley & Sons. (1997).
[4] J.I. Kroschwitz, Concise: Encyclopedia of Polymer Science and Engineering, John Wiley & Sons, New York. (1991).
[5] S. Loeband S. Sourirajan, Adv. Chem. Ser.,38 (1962) 117.
[6] M. Mulder, Basic principal of membrane technology, Kluwer Academic publishrs (1996).
[7] R. E. Kesting, A. K. Fritzsche, , Polymeric gas separation membranes, John Wiley & Sons publishrs (1993).
[8] K.S. Kamalesh, R.L. Douglas, AIChE, (1988).
[9] M.S. Verrall, M.J. Hudson, Separations for Biotechnology, Ellis Horwood (1987).
[10] Richard W. Baker, Membrane technology and applications, McGraw-Hill (2000).
[11] H. Strathmann, ACS Symp. Ser.,269 (1985) 165.
[12] H. Strathmann and K. Koch, Desalination, 21(1977) 241.
[13] J.G. Wijmans and C.A. Smolders, in H.K. Londsdale and M.H. Pinho (Eds), Synsetic Membrane : Science, Engineering and Application, Reidal, Dordrecht, The Netherlands (1986).
[14] L. Zeman and T. Fraser, J. membr. Sci.,84 (1993) 93.
[15] L. Zeman and T. Fraser, J. membr. Sci. 87 (1994) 267.
[16] P. Witte, P.J. Dijkstra, J.W.A. Berg, J. Feijen, J. membr. Sci.,117 (1996) 1.
[17] K. Binder, Spinodal decomposition, in P. Haasen (Ed.), Materials Science and Technology, A Comprehensive Treatment, Vol. 5, VCH, New York, (1991).
[18] H. Tompa, Polymer Solutions, Butterworths, London, (1956).
[19] F. W. Altena and C. A. Smolders, Mromolecules, 15 (1982) 1491.
[20] L. Yimaz and A.J. McHugh, J. Appl. Polym. Sci., 31(1986) 997.
[21] K. Kamide and S. Matsuda, polym. J., 7 (1984) 515.
[22] R. Koningsveld, Chem. Zvesti, 26 (1972) 263.
[23] A. J. Reuvers, F. W. Altena and C.A. Smolders, J. Polym. Sci., Part B: Polym. Phys., 24 (1986) 783.
[24] F.W. Altena, J.S. Schroder, R. Van de Huls and C.A. Smolders, J. Polym. Sci.., Part B: Polym. Phys. Ed., 24 (1986) 1725.
[25] H. Strathmann, P. Scheible and R.W. Baker, J. Appl. Polym. Sci., 15 (1971) 811.
[26] M. Guillotin, C. Lemoyne, C. Noel and L. Monnerie, Desalination, 21 (1977) 165.
[27] M. Mulder, J. Oude Hendrikman, J. G. Wijmans and C.A. Smolders, J. Appl. Polym. Sci., 30 (1985) 2805.
[28] M. Kurata, Thermodynamics of polymer solution, Harwood Academic, London, (1982).
[29] P .J. Flory, Principles of Polymer Chemistry, Comell University Press, (1953).
[30] M.T. So, F.R. Eirich, H. Strathmann and R.W. Baker, Polym. Lett., 11 (1973) 201.
[31] A. Bottino, G. Capanelli, S. Munari and A. Turturro, Thermodynamic approach to prepare asymmetric membranes of polyvinylidene fluoride, in B. Sedlacek and J. Kahovec (Eds.), Synthetic polymeric Membranes, Walter de Gruyter, (1987).
[32] C.W. Yao, R.P. Burford and A.G. Fane, J. Membrane Sci., 38 (1988) 113.
[33] A.J Reuvers, Ph.D. Thesis, University of Twente, (1987).
[34] F.W Altena, And C.A Smoders, Macromolecules, 15 (1982),1491.
[35] N. Nemoto, M. Tanaka, H. Odani, and M. Tamura, Bull. Inst. Chem. Res. Kyoto Univ. 43 (1965) 7.
[36] H. Hachisuka, S. Goto, Y.Tsujita, A. Takizawa, T. Kinoshita, and M. Miyamoto, polymer 31 (1990) 276.
[37] A.S. Michaels, W.R. Vieth, and H.J. Bixler, J. Appl. Polym. Sci. 8: (1964) 2735
[38] H. Hachisuka, H. Kito, Y. Tsujita, A. Takizawa, J. Appl. Polym. Sci. 35 (1988) 1333.
[39] J.P Graig, J.P Knudsen, and V.F Holland, Text Res. J., 32 (1962) 435.
[40] H Strathmann, and K.Kock, Desalination, 21 (1977) 241.
[41] I.Cabasso,: Membrane technology, in A.R. Cooper (ed) Ultrafiltration membranes and applications, polymer science and technology, vol. 13, Plenum press, N. Y., (1980).
[42] K. Kamide and S. Madabe, Characterization technique of straight-through porose membranes, in A.R. Cooper (ed.), Ultrafiltration membranes and application, Plenum, New York,(1980).
[43] B. Rasneur, Porosimetry (characterization of porose membrane), Summer school on membrane Sci. And Tech., Cadarache, France, (1984).
[44] R.E. Kesting, Synthetic polymeric membrane, A structural perspective, 2nd. Ed., Wiley, New York, (1985).
[45] S. Lowell and J.E. Shields in B. Scarlett (ED.), Power surface area and porosity, Power technology series, Wiley, New York, (1987).
[46] F.P. Cuperus, characterization of ultrafiltration membranes, Ph.D. Thesis. Twente, The Netherland,(1990).
[47] M. Mulder, Basic principal of membrane technology, Kluwer, Dordrecht, The Netherland,(1991).
[48] S.S Kulkarni, E.W. Funk and N.N. Li, Membranes,in W.S.W. Ho and K.K. Sirkar (eds.), Membrane Handbook, Van Nostrand Reinhold, New York, (1992).
[49] H. Bechhold, M. Schlesinger, K.Silbereisen, L. Maier and W. Nurnberger, Kolloid Z., 55 (1931) 172.
[50] E. Honold, and E.L. Skau, filters, Science 120 (1954) 805.
[51] D. Dollimore and G.R. Heal, J. Appl. Chem. 14 (1964) 109.
[52] M. Brun, A. Lallemand, J.F. Quinson and C. Eyraud, Thermochim. Acta, 21 (1977) 59.
[53] A. Mey-Marom and M.G. Katz, J. Membr. Sci.,27 (1986) 119.
[54] C.L. Glaves and D.M. Smith, J. Membr. Sci.,46 (1989) 167.
[55] K. Schneider, W. Holz, R. Wollbeck and S.Ripperger, J. Membr. Sci.,39 (1988) 25.
[56] G. Reichelt, J. Membr. Sci.,60 (1991) 253.
[57] L. Zeman, J. Membr. Sci.,71 (1992) 233.
[58] I.J. Youn, J. Jeong, T. Kim, J.C. Lee, J. Membr. Sci.,145 (1998) 265.
[59] A.W. Adamson, Physical Chemistry of surface, Wiley, New York, (1982).
[60] W. Kujawski, P. Adamczak, A. Narebska, Sep. Sci. Technol. 24 (1989) 495.
[61] G.Reichelt, J. Membr. Sci.,60 (1991) 253.
[62] S. Munari, A, Bollino P.Moretti, I. Becchi, J. Membr. Sci.,41 (1989) 69.
[63] P. Mikulasek, P. Dolecek, Sep. Sci. Technol. 29 (1989) 1183
[64] K.S. Mcgure, K.W. Lawson, D.R.Lioyd, J. Membr. Sci.,41 (1995) 127.
[65] M. Mulder, basic principles of membrane technology, Kluwer Academic Publishers (1991) 158
[66] IUPAC reporting physisorption data, Pure Appl.Chem.,57 (1985) 603.
[67] E.A. Mason, , and A.P. Malinauskas, , Gas transport in the porous media: The dusty gas model, Elsevier, Amstewrdam,(1983).
[68] R. Wang T.S. Chung, J.Membr.Sci.188 (2000) 29.
[69] J. Crank, G.S. Park, Diffusion in polymer, Academic Press: London, (1968).
[70] H.K. Lonsdale, , Properties of cellulose acetate membranes, in desalination by reverse Osmosis; U. Merten, Ed; M.I.T. Press: Cambridge, (1966); chap 4.
[71] R.M.Barrer, Surface and volume flow in porous media, in The Solid-Gas Interface; E.A. Flood, Ed.; Marcel Dekker: New York, (1967); chap. 19.
[72] H.B.Hopfenberg, Ed., Permeability of Plastic Films and Coatings to Gases, Vapors and Liquids; Plenum Press: New York, (1974).
[73] S.-T. Hwang, K. Kammermeyer, Membranes in Separations Techniques of Chemistry, Vol. VII ; Wiley-Interscience : New York, (1975) ; chap. 5.
[74] S.A. Stern, In Membrane Separation Processes ; P. Meares, Ed.; Elsevier : New York, (1976) ; chap.8.
[75] V. Stern, W.J. Koros, , D.R. Paul, H.K. Lonsdale, , R.W. Baker, Adv. Polym. Sci. 32 (1979) 69.
[76] S.A. Stern, , H.L. Frisch, , Ann. Rev. Mater. Sci. 11 (1981) 523.
[77] W.R. Vieth, Diffusion in and through polymer; Carl Hanser Munich, (1991) chap. 4.
[78] U.Merten, in Desalination by Reverse Osmosis; U. Merten, Ed.; MIT Press: Cambridge, (1966).
[79] L. Dresner, , Desalination 15 (1974) 371.
[80] J.A.Weaver, A.B. Metzner, , A.I.Ch.E.J. 12 (1966) 655.
[81] J.P. Agrawal., S.J. Sourirajan, Appl. Polym. Sci. 14 (1970) 1303.
[82] A. Kakuta, , O. Ozaki, M.J. Ohno, Polym. Sci. Polym. Chem. Ed. 16 (1978), 3249.
[83] A. Kakuta, M. Kuramoto, M. Ohno, A.Tanioka, K. Ishikawa, J. Polym. Sci. Polym. Chem. Ed. 18 (1980) 3229.
[84] R.Rangarajan, M.A Mazid, T Matsuura, S Sourirajan, Ind. Eng. Chem. Process Des. Dev. 23 (1984),79.
[85] M.A Majid, R Rangarajan, T Matsuura, S.Sourirajan, Ind. Eng. Chem. Prod. Res. Dev. 24(1985), 907.
[86] B.S Minhas, T Matsuura, S.Sourirajan, Eds.; American Chemical Society: Washington, D.C., (1985) .
[87] Fouda, A.E., Matsuura, T., Lui, A., Talbot, F.D.F., Sourirajan, S., Sep. Sci. Technol. 23 (1988) 1839.
[88] A.Y Tremblay, A.E Fouda, A Lui,. T Matsuura,., S Sourirajan, Can. J. Chem. Eng. 66 (1988) 1027.
[89] Y Chen, A.E Fouda, T Matsuura,. Eds.; National Research Council of Canada : Ottawa (1989) 259.
[90] Y Chen, A.E Fouda, T Matsuura, AIChE. Symp. Ser. 272. (1989)18.
[91] R.C Binning, R.J. Lee,. J.F.Jenning, E.C.Martin, Ind. Eng. Chem. 53, (1961) 45.
[92] T.Okada, T. Matsuura, , J. Memb. Sci., 59 (1991) 133.
[93] D Hill, Design Engineering of Biomaterials for Medical Devices, John Wiley & Sons. (1998)
[94] R Richard, Unit Operations and Processes in Environmental Engineering, PWS Publishing Company. (1996).
[95] B.D. Ratner, Surface Characterization of Biomaterials, Elsever, Washington, USA. (1987).
[96] D.S. Soane, Polymer applications for biotechnology macromolecular separation and identification. Englewood Cliffs, New Jersey, USA. (1992)
[97] M.C.Porter, ‘Micrifiltration’, in Bungay, P.M., Lonsdale, H.K., de Pinho, M.N., (eds.), Synthetic membranes: Science, Engineering and Application, Nato, ASI Series, Vol. 181., Reidel Publishing Company, (1986), 235.
[98] S.Angus, B. Armstrong, and K.U de Renk, International tables of the fluid state, Pergamon press, (1976)..
[99] A. Peter, World Water and Envir. Eng., 21(3), (1998) 77.
[100] H Eustache,and G. Histi, J. Membr. Sci., 8 (1981) 105.
[101] Van’t Hof, PhD thesis, University of Twente, (1988).
[102] J.M.S Henis and M.K Tripodi, J. Membr. Sci., 8 (1981) 233.
[103] T.Nishiwaki, and S.Itoi, Jap. Chem. Quarterly, 41 (1982) 36.
[104] H Moone, and N N.J iefind, Desalination, 41 (1982) 327.
[105] J.I.,Kroschwitz , Concise: Encyclopedia of Polymer Science and Engineering, John Wiley & Sons, New York. (1991)
[106] D.M,Ruthven, Encyclopedia of Separation Technology, John Wiley & Sons. (1997)
[107] P.A. Schweitzer, Handbook of Separation Technique for Chemical Engineers, 3nd Edition, McGraw Hill. (1994).
[108] G.G. Howley, The Condensed Chemical Dictionary, 9th Edition, Van Nostrand Reinhold Company (1977).
[109] B. Baum, W. Holley Jr., and R.A. White, hollow fibers in reverse osmosis, dialysis, and ultrafiltration, in membrane separation process, p. Meares, ed., Elsevier Scientific Pub.,Amsterdam, (1976).
[110] I. Moch, Jr., Hollow fiber membrane, Encyclopediate of Chemical Technology, 4th ed., vol. 13, Wiley Interscience, New York, (1995) 312.
[111] H.I. Mahon, U.S. Patent 3,228,876, (1966).
[112] Y. Kusuki, T. Yoshinaga, and H. Shmazaki, U.S. Patent 5,141,642, (1992).
[113] C.V. Kopp, R.J.W. Streeton, and P.S. Khoo, U.S. Patent 5,318,417, (1994)
[114] J. Qin, T.S. Chung, J. Membr. Sci., 157 (1999) 35.
[115] J. Ren, T.S. Chung, D. Li, R. Wang, Y. Liu, J. Membr. Sci., 207 (2002) 227
[116] A. Idris, M.Y. Noordin, A.F. Ismail, S.J. Shilton, J. Membr. Sci., 202 (2002) 205.
[117] O.M. Ekiner, G. Vassilatoe, J. Membr. Sci., 53 (1990) 259.
[118] R. Wang, T.S. Chung, J. Membr. Sci., 188 (2001) 29.
[119] T.S. Chung, S.K. Teoh, Wanye W.Y. Lau, M.P. Srinivasan, Ind. Eng. Chem. Res., 37 (1998) 3930.
[120] A. Idris, M.Y. Noordin, A.F. Ismail, S.J. Shilton, J. Membr. Sci., 205 (2002) 223.
[121] I.C. Kim, H.G. Yun, K.H. Lee, J. Membr. Sci., 199 (2002) 75
[122] T.S. Chung, S.K. Teoh, X. Hu, J. Membr. Sci., 133 (1997) 161.
[123 D.S. Ryu, T. Inoue, K. Osaki, Polyer, 39(12) (1998) 2515.
[124] J.J. Kim, J.R. Hwang, U.Y. Kim, S.S. Kim., J. Membr. Sci., 108 (1995) 25.
[125] J.H. Hau, S. Wang, J. Appl. Polym. Sci., 68 (1998) 1269.
[126] C.C. Pereira, R. Nobrega, K.V. Peinemann, C.P. Borges, J. Membr. Sci. 226 (2003) 35.
[127] R. Clement, A. Jonquieres, I. Sarti, M.F. Sposata, M.G.C. Teixidor, P. Lochon, J. Membr. Sci. 233 (2004) 141.
[128] C.J. Sajitha, D. Mohan, Polym. Int. 52 (2003) 138.
[129] C. Cao, T.S. Chung, S.B. Chen, Z.J. Dong, Chem. Eng. Sci. 59 (2004) 1053.
[130] T.S. Chung, W.H. Lin, R.H. Vora, J. Membr. Sci. 167 (2000) 55.
[131] R. Wang, T.S. Chung, J. Membr. Sci. 188 (1) (2001) 29.
[132] A.F. Ismail, S.J. Shilton, I.R. Dunkin, S.L. Gallivan, J. Membr. Sci. 126 (1) (1997) 133.
[133] S.J. Shilton, J. Appl. Polym. Sci. 65 (7) (1997) 1359.
[134] T.S. Chung, J.J. Qin, J. Gu, Chem. Eng. Sci., 55 (2000) 1077
[135] M. Niwa, H. Kawakami, S. Nsgaoka, T. Shinbbo, T. Kanamoni, J. Membr. Sci. 171 (2) (2000) 253.
[136] T.S. Chung, X.D. Hu, J. Appl. Polym. Sci. 66 (6) (1997) 1067.
[137] I. Cabasso, E. Klein, J.K. Smith, J. Appl. Polym. Sci. 20, (1976) 2377
[138] Z.L. Xu, T.S. Chung, J. Membr. Sci. 147 (1998) 35.
[139] M.C. Yang, M. Chou, J. Membr. Sci. 116 (1996) 279.
[140] T.S. Chung, S.K. Teoh, W.W.T. Lau, M.P. Srinivasan, Ind. Eng. Chem. 37 (1998) 3930.
[141] M. Khayet, C.Y. Feng, K.C. Khulbe, T. Matusuura, polymer 43 (2002) 3879.
[142] I. Pinnau, W,J. Koros, J. Membr. Sci. 71 (1992) 81.
[143] J.J. Qin, R. Wang, T.S. Chung, J. Membr. Sci. 175 (2000) 197.
[144] J.J. Qin, T.S. Chung, J. Membr. Sci. 229 (2004) 1.
[145] R.E. Kesting, A.K. Fritzsche, polymeric gas separation membranes, Wiley, New York, NY, (1993).
[146] R.E. Kesting, A.K. Fritzsche, M.K. Tripodi, A.C. Handermann, C.A. Cruse, R.F. Malon, US Patent 4,871,494 (1989).
[147] D. Wang, K. Li, W.K. Teo, J. Membr. Sci. 115 (1996) 85.
[148]S.G. Li, G.H. Koop, M.H.V. Mulder, T. van den Boomgarrd, C.A. Smolders, J. Membr. Sci. 94 (1994) 329.
[149] S.C. Peseak, W.J. Koros, J. Membr. Sci. 88 (1994) 1.
[150] J.J. Qin, J. Xu, T.S. Chung, J. Membr. Sci. 182 (2001) 57.
[151] X. Miao, S. Sourirajan, H. Zhang, W.W.Y. Lau, Sep. Sci. Technol. 31 (1996) 141.
[152] G.C. Kapantaidakis, G.H. Koops, J. Membr. Sci. 204 (2002) 153.
[153] D. Wang, K. Li, W.K. Teo, J. Membr. Sci. 176 (2000) 147.
[154] D. Wang, K. Li, W.K. Teo, J. Membr. Sci. 163 (1999) 211.
[155] A. Bottino, G. Capannelli, S. Munari, J. Appl. Polym. Sci. 30, (1985) 3009.
[156] M. Khayet, C.Y. Feng, K.C. Khulbe, T. Matsuura, polymer 43 (2002) 3879.
[157] C.Y. Feng, K.C. Khulbe, G. Chowdhury, T. Matsuura, V.C. Sapkal J. Membr. Sci. 189 (2001) 193.
[158] J. Smid, J.H.M. Albers, A.P.M. Kusters, J. Membr. Sci. 64 (1991) 121.
[159] K.Y. Wang, T. Matsuura, T.S. Chung, W.G. Guo, J. Membr. Sci. 240 (2004) 67.
[160] L. Ying, G. Zhai, A.Y. Winata, E.T. Kang, K.G. Neoh, J. Coll. Inter. Sci. 265 (2003) 396.
[161] J. Li, S. Wang, K. Nagai, T. Nakagawa, A.W.H. Mau, J. Membr. Sci. 138 (2004) 143.
[162] D Hill, Design Engineering of Biomaterials for Medical Devices, John Wiley & Son (1998).
[163] R. Richard, Unit Operations and Processes in Environmental Engineering, PWS Publishing Company (1996).
[164] E.W. Ralph, N.P. Peter, Industrial Membrane Processes, AIChE Symposium Series, 82 (1986) 248.
[165] J.P. Hamel, J.B. Hunter, S.K. Sikdar, Downstream Processing and Bioseparations: Recovery and Purification of Biological Products, American Chemical Society (1990).
[166] H. J. Francois, H. Jean, S. Subhas, Downstream Processing and Bioseparation: Recovery and Purifucation of Biological Product, American Chemical Society (1990).
[167] B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, , Biomaterials Science, Harcourt Brace & Company, California, USA (1996).
[168] D.S. Soane, Polymer applications for biotechnology macromolecular separation and identification. Englewood Cliffs, New Jersey, USA (1992).
[169] O. Kedem, A.Katchalsky, Biochim. Biophys. Acta., 27 (1958) 229.
[170] S.B. Kessler, E.Klein, Dialysis. In Membrane Handbook, Van Nostrand Reinhold, New York. (1992) 161,.
[171] S.S. Kulkarni, E.W. Funk, N.N. Li, Ultrafiltration. In Membrane Handbook, Van Nostrand Reinhold, New York (1992) 391.
[172] W. Kidwell, R. Knazek, Y. Wu, Trends in Animal cell culture Technol. (1989) 29.
[173] W.F. Blatt, A. Dravid, A.S. Michaels, L. Nelsen, Memb. Sci. Technol. (1970) 47.
[174] A.L. Zydney, Artificial Organs, 17 (1993) 919.
[175] M. Łabęcki, I. Weber, Y. Dudal, J. Koska, J.M. Piret, B.D. Bowen, J Memb Sci, 146, (1998) 197.
[176] C.C. Lin, Ph.D. Thesis, National Taiwan University of Science and Technology, (2003).
[177] R.W. Spillman, Economics of gas separation membranes, Chem. Eng. Prog. V85 (1) 1989.
Chapter 3
[1] M.C. Yang, M.T. Chou, J. Membr. Sci. 116 (1996) 279.
[2] I. Cabasso, E. Klein and J.K. Smith, J. Appl. Polym. Sci., 20 (1976) 2377.
[3] J.J. Qin, J. Gu, T.S. Chung, J. Membr. Sci. 182 (2001) 57.
[4] A. Lui, F.D.F. Talbot, J. Appl. Polym. Sci., 36 (1988) 1809.
[5] M.C. Yang, D.G. Yu, J. Appl. Polym. Sci. 62 (1996) 2287.
[6] D.F. Stamatialis, C.R. Dias, M.N. de Pinho, J. Membr. Sci. 160 (1999) 235.
[7] M. Hirose, H. Ito, Y. Kamiyama, J. Membr. Sci. 121 (1996) 209.
[8] M. Hayama, F. Kohori, K. Sakai, J. Membr. Sci. 197( 2002) 243.
[9] Z.L. Xu and F.A. Qusay, J. Membr. Sci., 233 (2004) 101.
[10] H. de Balmann and V. Sanchez, Int. Chem. Eng, 32 (1992) 665.
[11] M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, F. Smith, Nature, 168 (1951) 167.
[12] M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, F. Smith, Anal. Chem., 28 (1956) 350.
[13] D.M. Koenhen, M.H.V. Mulder, C.A. Smolders, J. Appl. Polym. Sci. 21 (1997) 199.
[14] J. Ren, T.S. Chung, D. Li, R. Wang, Y. Liu, J. Membr. Sci. 207 (2002) 227.
15]A.Oya, S.Yoishida, Y.Abe, T.Iizuka and N.Makiyama, Carbon 31 (1993) 71.
16]W.W.C Topley, G. Wilson, A. Miles, M.T. Parker, Topley and Wilson’s principles of bacteriology, virology and immunity. 7th Ed. Vol 2: Systematic bacteriology, Williams & Wilkins, Baltimore 2 (1984) 217.
[17] Z.L. Xu, F.A. Qusay. J. Membr. Sci., 233 (2004) 101.
Chapter 4
[1] A.S. Jonsson. G. Tragardh, Desalination 77 (1990) 135.
[2] S.A. Mckelvey, W.J. Koros, J. Membr. Sci. 112 (1996) 29.
[3] I. Cabasso, E. Klein and J.K. Smith, J. Appl. Polym. Sci., 20 (1976) 2377.
[4] I. Cabasso, E. Klein and J.K. Smith, J. Appl. Polym. Sci., 21 (1977) 165.
[5] J.M.S. Henis and M.K. Tripodi, Sep. Sci. Technol., 15 (1980) 1059.
[6] M. Sidhoum, A Sengupa and K.K. Sirkar, AIChE J., 34 (1988) 417.
[7] S. Mok, D.J. Worsfold, A.E. Fouda, T. Matsuura, S. Wang, K. Chan., J. Membr. Sci. 100 (1995) 183.
[8] I. M. Wienk, F.H.A.Olde Scholtenhuis, Th. Van den Boomgaard,C.A. Smolders, J. Membr. Sci. 106 (1995) 233.
[9] J.J. Shieh, T.S. Chung, J. Membr. Sci. 140 (1998) 67.
[10] J.J. Qin, J. Gu, T.S. Chung, J. Membr. Sci. 182 (2001) 57.
[11] A. Idris, A.F.Ismail, M. Noorhayati, S.J.Shilton, J. Membr. Sci. 213 (2003) 45.
[12] A. Idris, A.F.Ismail, M. Noorhayati, S.J.Shilton, J. Membr. Sci. 202 (2002) 205.
[13] C. Bangxiao, Z. Yong, G. Congjie, Dsalination 146 (2002) 331.
[14] E. Sada, H. Kumazawa, J.S. Wang, M. Koizumi, J. Appl. Polym. Sci., 45 (1992) 2181.
[15] D. Gustav, S. Lothar, A. Wolfgang, US Pat. 5,403,485, (1995).
[16] J. J. Qin, Y. Li, L.S. Lee, H. Lee, J. Membr. Sci. 218 (2003) 173.
[17] S. Nakatsuka, I. Nakate, T. Miyano, Desalination 106 (1996) 55.
[18] S.A. Mckelvey, D.T. Clausi, W.J. Koros, J. Membr. Sci. 124 (1997) 223.
[19] T.S. Chung, S.K. Teoh, W.W.Y. Lau, M.P. Srinivasan, Ind. Eng. Chem. 37 (1998) 3930.
[20] O.M. Ekiner, G. Vassilatos, J. Membr. Sci. 53 (1990) 259.
[21] K. Ma, S. Sourirajan, W.W.Y. Lau, Sep. Sci. Technol. 30 (1995) 3025.
[22] T. Liu, D. Zhang, S. Xu. S. Sourirajan, Sep. Sci. Technol. 27 (1992) 161.
[23] J.J. Qin, T.S. Chung, J. Membr. Sci. 157 (1999) 35.
[24] T.S. Chung, E.R. Katchniski, J. Appl. Polym. Sci. 65 (1997) 1555.
[25] T.S. Chung, S.K. Teoh , X. Hu, J. Membr. Sci. 133 (1998) 161.
[26] T.S. Chung, E. R. Kafchinski, P. Foley, J. Membr. Sci. 75 (1992) 181.
[27] M. Henmi, T. Yoshioka, J. Membr. Sci. 85 (1993) 129.
[28] T.S. Chung, E.R. Kafchinski, R. Vora, J. Membr. Sci. 88 (1994) 21.
[29] X. Miao, S. Sourirajan, H. Zhang, W.W.Y. Lau, Sep. Sci. Technol, 31 (1996) 141.
[30] T.S. Chung, Z.L. Xu, W.H. Lin, J. Appl. Polym. Sci, 72 (1999) 379.
[31] R.E. Kesting, Synthetic Polymeric Membranes, 2nd ed., Wiley, New York, (1985) 290.
[32] K. Kamada, S. Minami, and K. Yoshida, US Pat. 4,055,696, (1977).
[33] M.C. Yang, M.T. Chou, J. Membr. Sci. 116 (1996) 279.
[34] Y. Abe, A. Mochzuki, J. Appl. Polym. Sci., 84 (2002) 2302.
[35] H. de Balmann, P. Aimar and V. Sanchez, J. Membr. Sci., 45 (1989) 17.
[36] H.F. Mark, S.M. Atlas and E. Cernia, Man-made Fibers, Wiley, New York, 1967
Chapter 5
[1] H.I. Mahon, Permeability separator apparatus and membrane element, method of making the same and process utilizing the same, U.S. Patent 3,228,876, Dow Chemical, (1966).
[2] H.I. Mahon, Permeability separator and process using hollow fiber U.S. Patent 3,228,877, Dow Chemical, (1966).
[3] S.A. Mckelvey, D.T. Clausi, W.J. Koros, J. Membr. Sci. 124 (1997) 223.
[4] T.S. Chung, S.K. Teoh, W.W.Y. Lau, M.P. Srinivasan, Ind. Eng. Chem. 37 (1998) 3930.
[5] O.M. Ekiner, G. Vassilatos, J. Membr. Sci. 53 (1990) 259.
[6] K. Ma, S. Sourirajan, W.W.Y. Lau, Sep. Sci. Technol. 30 (1995) 3025.
[7] A. Idris, M.Y. Noordin, A.F. Ismail, S.J. Shilton, J. Membr. Sci. 202 (2002) 205.
[8] J.J. Qin, T.S. Chung, J. Membr. Sci. 157 (1999) 35.
[9] T.S. Chung, E.R. Katchniski, J. Appl. Polym. Sci. 65 (1997) 1555.
[10] T.S. Chung, S.K. Teoh , X. Hu, J. Membr. Sci. 133 (1998) 161.
[11] T.S. Chung, E. R. Kafchinski, P. Foley, J. Membr. Sci. 75 (1992) 181.
[12] M. Henmi, T. Yoshioka, J. Membr. Sci. 85 (1993) 129.
[13] T.S. Chung, E.R. Kafchinski, R. Vora, J. Membr. Sci. 88 (1994) 21.
[14] X. Miao, S. Sourirajan, H. Zhang, W.W.Y. Lau, Sep. Sci. Technol, 31 (1996) 141.
[15] T.S. Chung, Z.L. Xu, W.H. Lin, J. Appl. Polym. Sci, 72 (1999) 379.
[16] T.S. Chung, X. Hu, J. Appl. Polym. Sci, 66 (1997) 1067.
[17] J.H. Kim, Y.I. Park, J. Jegal, K.H. Lee, J. Appl. Polym. Sci, 57 (1995) 1367.
[18] O.M. Ekiner and G. Vassilatos, Polymeric membranes, U.S. patent 5,102,600, E.I. Du Pont de Nemours and Co.,(1992).
[19] M.C. Yang, M.T. Chou, J. Membr. Sci. 116 (1996) 279.
[20] H.F. Mark, S.M. Atlas and E. Cernia, Man-made Fibers, Wiley, New York, 1967
[21] P. Smith , P.J. Lemstra, J. Mater. Sci.,262 (1980) 505.
[22] J.J. Shieh, T.S. Chung, J. Membr. Sci. 140 (1998) 67.
[23] S.H. Chen. S.L. Huang, K.C. Yu, J.Y. Lai, M.T. Liang, J. Membr. Sci.; 172 (2000) 105.
[24] D.F. Stamatialis, R. Dias, M.N. de Pinho, J. Membr. Sci. 160 (1999) 235.
Chapter 6
[1] S.A. Mckelvey, D.T. Clausi, W.J. Koros, J. Membr. Sci. 124 (1997) 223.
[2] O.M. Ekiner, G. Vassilatos, J. Membr. Sci. 53 (1990) 259.
[3] K. Ma, S. Sourirajan, W.W.Y. Lau, Sep. Sci. Technol. 30 (1995) 3025.
[4] A. Idris, M.Y. Noordin, A.F. Ismail, S.J. Shilton, J. Membr. Sci. 202 (2002) 205.
[5] T.S. Chung, E.R. Katchniski, J. Appl. Polym. Sci. 65 (1997) 1555.
[6] M. Henmi, T. Yoshioka, J. Membr. Sci. 85 (1993) 129.
[7] X. Miao, S. Sourirajan, H. Zhang, W.W.Y. Lau, Sep. Sci. Technol, 31 (1996) 141.
[8] J.H. Kim, Y.I. Park, J. Jegal, K.H. Lee, J. Appl. Polym. Sci, 57 (1995) 1637.
[9] H. A. Tsai, D.H. Huang, S.C. Fan, Y.C. Wang, C. L. Li, K.R. Lee, J.Y. Lai, J. Membr. Sci., 198 (2002) 245.
[10] Z.L. Xu, F.A. Qusay, J. Membr. Sci., 233 (2004), p.101.
[11] X Yin, H. Cheng, X. Wang, Y. Yao, J. Membr. Sci. 146(1998) 179.
[12] L. Jiang, T. S. Chung, D.F. Li, C. Cao, S. Kulprathipanja, J. Membr. Sci. 240 (2004) 91.
[13] Cordis Dow Corp, Cellulose acetate hollow fibers. GB Pat. 2,000,722 (1979).
[14] D. Gustav, S. Lothar, A. Wolfgang, Dialysis membrane made of cellulose acetate. US Pat. 5,403,485, (1995).
[15] Teijin Ltd, Hollow fiber blood purifying membrane and process for producing the same. EP 0,697,242 (1996).
[16] D.F. Stamatialis, C.R. Dias, M.N. de Pinho, J. Membr. Sci. 160 (1999) 235.
[17] K.J. Kim, A.J. Fane, C.J.D. Fell, J. Membr. Sci. 54 (1990) 89.
[18] J.Y. Kim, H.K. Lee, S.C. Kim, J. Membr. Sci. 163 (2) (1999) 159.
[19] W.R. Bowen, T.A. Doneva, J. Membr. Sci. 171 (2000) 141.
[20] P. Pradanos, M.L. Rodriguez, J.I. Calvo, A. Hernandez, F. Tejerina, J. Membr. Sci. 117 (1996)291.
[21] P. van de Witte, P.J. Dijkstra, J.W.A. van den Berg, Feijen, J. Membr. Sci. 117 (1996) 1.
[22] C.A. Smolder, A.J. Reavers, R.M. Boom, I.M. Wienk, J. Membr. Sci. 73 (1992) 259.
[23] Y. Abe, A. Mochzuki, J. Appl. Polym. Sci. 84 (2002) 2302.
[24] R.M. Boom, Th. Van den Boomgaard, J.W.A. van den Berg, C,A, Smolder, Polymer. 34 (1993) 2348.
[25] D.M. Koenhen, M.H.V. Mulder, C.A. Smolders, J. Appl. Polym. Sci. 21 (1997) 199.
[26] M.-C. Yang, M.-T. Chou, J. Membr. Sci. 116 (1996) 279
[27] J. Ren, T.S. Chung, D. Li, R. Wang, Y. Liu, J. Membr. Sci. 207 (2002) 227.
[28] Z.K. Xu, L.Q. Shen, Q. Yang, F. Liu, S.Y. Wang, Y.Y Xu, J. Membr. Sci. 223 (2003) 105.
[29] W.L. Chou, D.G. Yu, M.-C. Yang, J. Polym. Res. (2004), in press.
[30] A.Y. Houde, S.S. Kulkarni, M.G. Kulkarni, J. Membr. Sci. 71 (1992) 117.
[31] M. Hirose, H. Ito, Y. Kamiyama, J. Membr. Sci. 121 (1996) 209.
Chapter 7
[1] G.S,Loeb, S.Sourirajan, Adv. Chem. Ser. 38 (1963) 117.
[2] M.J. Kell, R.D. Mahoney, Cellulose acetate hollow fibers. GB Pat. 2,000,722. (1979);
[3] N. Ichiro, Cellulose acetate hollow fiber separation membrane. Japan Pat. 6,343,842 (1994).
[4] N. Ichiro, N. Nobuyuki, Cellulose acetate hollow-fiber separation membrane and its production, Japan Pat. 8,108,053 (1996).
[5] S.W. Kang, J.H. Kim, D. Ko, C.K. Kim, J. Won, K. Char, Y.S. Kang, Polym. Sci. Part B: Polym.Phys. 42 (2004) 3344.
6]R.L. Davis, S.F. Etris, Catalysis Today, 36 (1997) 107.
7]Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim,. J. Biomedical Materials Research 52 (2000).
[8] I Sondi, S. B. Sondi, J. Colloid Interf. Sci. 275 (2004) 177.
[9]V. Alt, T. Bechert, P. Steinrücke, M. Wagener, P. Seidel, E. Dingeldein, E. Domann, R.Schnettler, Biomaterials 25 (2004) 4383.
10]I. Pastoriza-Santos, L.M. Liz-Marzán, Nano Lett 2 (2002) 903.
11]I. Pastoriza-Santos, L.M. Liz-Marzán, Langmuir 18 (2002) 2888.
12]I. Pastoriza-Santos, L.M. Liz-Marzán, Langmuir 15 (1999) 948.
13]T.S. Chung, K.C. Loh, S.K. Goh, J. Appl. Polym. Sci. 68 (1998) 1677.
[14] C.A. Smolder, A.J. Reuvers, R.M. Boom, I.M. Wienk. J. Membr. Sci. 73 (1992) 259.
[15] R.M. Boom, T.H. Van den Boomgaard, J.W.A Van den Berg, C.A.Smolder, Polymer 34 (1993) 2348.
16]I. Cabasso, E. Klein, J.K. Smith, J. Appl. Polym. Sci. 20 (1976) 2377.
[17] C.C Lin. The physical properties, microstructure and antibacterial ability of PAN-based activated carbon fiber supporting silver, Master dissertation, Fengchia University (2000), R.O.C.
[18] E.L. Cussler, Diffusion: Mass Transfer in Fluid Systems, second ed., Cambridge University Press, Cambridge, UK. (1997) Chapter 5.

QR CODE