簡易檢索 / 詳目顯示

研究生: 梁浩熏
Hao-Hsun Liang
論文名稱: 節能液晶光閥之光電特性研究
A Study on the Electro-Optical Characteristics of Energy-Efficient Liquid Crystal Light Shutters
指導教授: 李俊毅
Jiunn-Yih Lee
口試委員: 邱顯堂
Hsien-Tang Chiu
邱士軒
Shih-Hsuan Chiu
呂傑夫
Jier-Fu Lyuu
陳志勇
Chen-Yung Chen
鄭功龍
Kung-Lung Cheng
李育德
Yu-Der Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 185
中文關鍵詞: 強誘電性奈米粉體表面穩定強誘電性液晶高分子分散液晶高分子穩定膽固醇液晶雙穩態光閥
外文關鍵詞: ferroelectric nanoparticles, surface stabilized ferroelectric liquid crystal, polymer dispersed liquid crystal, polymer stabilized cholesteric texture, bistable light shutters
相關次數: 點閱:363下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要內容為藉由改良液晶光閥(Liquid crystal light shutter)之材料組成,改善現今高耗能之傳統液晶光閥,形成節能液晶光閥,並探討其光電性質。研究分為兩大實驗系統。首先,利用摻混低濃度之強誘電性奈米粉體-鈦酸鋇(Ferroelectric nanoparticles-Barium titanate, NPs-BaTiO3),降低液晶光閥之驅動電壓,進而改善了傳統液晶光閥之電耗能;更進一步,利用膽固醇液晶/紫外光硬化單體的最適化條件,研發出雙穩態液晶光閥,成功解決傳統液晶光閥之高耗能缺點。
本研究第一部分之內容聚焦於藉由摻混NPs-BaTiO3改善強誘電性液晶(Ferroelectric liquid crystal, FLC)與向列型液晶(Nematic liquid crystal, NLC)兩種液晶材料,及其各自衍生之液晶光閥之光電性質。經適當濕式研磨而得之NPs-BaTiO3均勻分散至強誘電性液晶及向列型液晶中,填充入平行配向之液晶試片中,前者形成表面穩定強誘電性液晶光閥(Surface stabilized ferroelectric liquid crystal light shutter, SSFLC light shutter),後者形成電控雙折射模式模式(Electrically controlled birefringence mode, ECB mode),並進一步加入紫外光硬化預聚物,填充入未經配向處理之液晶試片,形成強誘電性奈米粉體、液晶、高分子三成分之高分子分散液晶光閥(Polymer dispersed liquid crystal light shutter, PDLC light shutter)。藉由於液晶中導入具有強大偶極矩之NPs-BaTiO3, 增進液晶之物理性質[液晶相表現、介電性質、自發極化值]及液晶光閥之光電表現[電壓-穿透度特性、反應時間]。另外就PDLC光閥而言, 相分離過程中部分的NPs-BaTiO3包覆於高分子基材中,進而改變高分子基材之折射率,降低偏軸霧效應。
本研究第二部分之內容聚焦於修改兩種傳統高分子穩定膽固醇液晶光閥(Polymer stabilized cholesteric texture light shutter, PSCT light shutter)。針對反向模式PSCT光閥,我們探討不同紫外光照射強度及紫外光硬化壓克力單體濃度,對Reverse mode PSCT之網狀高分子,因施加垂直試片基板方向之高電壓脈衝後,所產生的扭曲現象之影響。利用較高之紫外光照射強度及較低單體濃度,所形成適當的網狀高分子型態,發生扭曲後可穩定散射態焦錐扇紋理,而經回溫處理後可回復至透明態平面紋理,構成電場-熱能可切換雙穩態反向模式高分子穩定膽固醇液晶紋理光閥(Electro-thermal switchable bistable reverse mode PSCT light shutter, reverse mode ETSB-PSCT light shutter),其具有散射態-透明態之灰階效果及無需電場施加即可維持散射態與透明態兩個光學狀態,成為具節能且隔熱優點之智慧窗。針對正向模式PSCT光閥,我們藉由提高紫外光硬化壓克力單體濃度,增加傳統正向模式PSCT 之遲滯現象,製成電場-熱能可切換雙穩態正向模式PSCT光閥(Electro-thermal switchable bistable normal mode PSCT light shutter, normal mode ETSB-PSCT light shutter),我們亦製備不同旋光濃度之normal mode ETSB-PSCT光閥,隨著旋光濃度增加, 此雙穩態光閥之透明態與散射態之對比度上升,且轉變至散射態之回溫處理所需溫度較低,成功節省切換時所需之熱能。最後,有鑑於ETSB-PSCT之研究成果,我們發現液晶與單體之濃度於特定組成比例下所製成的normal mode ETSB-PSCT光閥,於不同的電壓驅動下,在零電場時擁有多個穩定之光學狀態,成功開發出更具節能優點及應用性之電場可切換多穩態正向模式高分子穩定膽固醇液晶紋理光閥(Electrically switchable multistable normal mode polymer stabilized cholesteric texture light shutter, normal mode ESM-PSCT)。


In this study, we aim to increase the efficiency of conventionally energy intensive liquid crystal (LC) light shutters by integrating material composition and investigating the electro-optical properties. The study was divided into two experimental systems. First, low concentrations ferroelectric nanoparticles-Barium titanate (NPs-BaTiO3) was doped in order to reduce the driving voltage of a conventional LC light shutter, hence improving its power consumption. Secondly, the optimal production conditions of the LC/monomer were adopted to achieve bistable without applying an electric field. These two effects should allow for a more efficient LC light shutter.
The first part of this study focuses on the improvement of ferroelectric liquid crystals (FLC) and nematic liquid crystals (NLC), by doping with NPs-BaTiO3, and the electro-optical properties of the derived LC light shutters, respectively. The ferroelectric nanoparticles were well dispersed in the FLC and NLC using appropriate wet grindings. By filling into the homogeneous cells, the former became a surface stabilized ferroelectric liquid crystal (SSFLC) light shutter and the latter formed an electrically controlled birefringence (ECB) mode. Subsequently, the addition of a UV-curable prepolymer to fill the untreated substrate of the cell resulted in the polymer dispersed liquid crystal (PDLC) light shutter consisting of NLC, NPs-BaTiO3 and polymer. We introduced NPs-BaTiO3 with a large permanent electric dipole moment into the LC in order to enhance the physical properties and the electro-optical performance. Moreover, in the case of the PDLC light shutter, the part of the NPs-BaTiO3 coated by the polymer can modify the refractive index of the polymer during phase separation; this can be harnessed to increase the viewing angles of the on-field state and reduce the off-axis haze effect.

The second part of this study focuses on the modification of the two conventional polymer stabilized cholesteric texture (PSCT) light shutters. For the reverse mode PSCT light shutter, we studied the effects of different UV curing intensities and monomer concentrations on the distortion of the polymer network of reverse mode PSCT after the application of a high voltage pulse perpendicular to the cell substrate. With the use of a higher UV curing intensity and a lower monomer concentration, we created an optimized polymer network that could stabilize the scattering focal conic texture after distortion, and revert to the transparent planar texture via the annealing treatment, thereby giving rise to an electro-thermal switchable bistable reverse mode PSCT light shutter (Reverse mode ETSB-PSCT light shutter). This exhibited excellent gray scale performance, and the ability to maintain the transparent and scattering states without the need of an applied electric field, and thereby holds tremendous promise for use in energy efficient and thermally insulating switchable windows. For the normal mode light shutter, we utilized higher concentrations of monomers to enhance hysteresis of conventional normal mode PSCT, fabricating an ETSB-PSCT light shutter. We have also fabricated normal mode ETSB-PSCT light shutters with various chiral dopant concentrations and the effects of the chiral dopant concentrations on the morphology of polymer network and electro-optical performance were studied. As the chiral dopant concentrations increased, electro-optical experiments indicated that the contrast ratio of the transparent and scattering states of the ETSB-PSCT increased and the required annealing temperature for reverting to the scattering FC state decreased. This indicates a successful reducing in the required heat during energy conversion. Finally, considering these research results of normal mode ETSB-PSCT light shutter, we found that the prepared PSCT under a specific LC/monomer ratio and different driving voltage possess multistable optical states with no applied electric field. This can be considered to be the successful development of an energy efficient electrically switchable multistable normal mode polymer stabilized cholesteric texture light shutter (Normal mode ESM-PSCT light shutter).

中文摘要 I Abstract III 目錄 V 圖目錄 XI 表目錄 XVII 第一章 緒論 1 1.1 前言 2 1.2 液晶簡介 3 1.2.1 液晶的發現 4 1.2.2 液晶分類 4 1.2.3 液向性液晶 5 1.2.4 熱向性液晶 5 1.2.5 向列型液晶 6 1.2.6 膽固醇型液晶 7 1.2.7 層列型液晶 10 1.2.8 盤型液晶 11 1.3 液晶性高分子簡介 11 1.4 液晶的基本物理特性 13 1.4.1 液晶分子排列的秩序參數 14 1.4.2 液晶之介電性質 16 1.4.3 液晶之雙折射性 16 1.4.4 液晶之彈性連續理論 18 1.5 強誘電性液晶 19 1.5.1強誘電性液晶的自發性極化值 19 1.5.2強誘電性液晶的光電特性與顯示原理 21 1.6 高分子分散液晶 23 1.6.1高分子分散液晶之製備方式 24 1.6.2 聚合誘導相分離 25 1.6.3高分子分散液晶之發展趨勢及應用範圍 26 1.7 高分子穩定膽固醇液晶紋理 28 1.7.1高分子穩定膽固醇液晶紋理之模式 28 1.7.2材料及光聚合反應機制 29 1.8 參考文獻 31 第二章 研究背景與實驗 33 2.1 文獻回顧 34 2.2 研究動機與目的 36 2.3實驗系統概述 36 2.4 參考文獻 39 第三章 表面穩定強誘電性液晶光閥摻混強誘電性奈米粉體之光電性質研究 40 中文摘要 41 Abstract 42 3.1 前言 43 3.2 實驗 45 3.2.1 實驗材料 45 3.2.2液晶試片之製程 45 3.2.3 NPs-BaTiO3/FLC混合系統 47 3.2.4 實驗流程及量測原理 48 3.2.4.1 液晶相之偏光顯微鏡觀察 48 3.2.4.2 V型切換特性 48 3.2.4.3 反應時間 49 3.2.4.4 介電特性 50 3.2.4.5 自發極化值之測定 52 3.3 結果與討論 53 3.3.1材料製備之主體液晶材料鑑定 53 3.3.2 NPs-BaTiO3之粒徑尺寸分析 55 3.3.3 NPs-BaTiO3/FLC系統之物理及光電性質研究 57 3.3.4 NPs-BaTiO3/SSFLC之光電性質研究 58 3.4 結論 64 3.5參考文獻 65 第四章 高分子分散液晶光閥摻混強誘電性奈米粉體之光電性質研究 67 中文摘要 68 Abstract 69 4.1 前言 70 4.2 實驗 72 4.2.1 實驗材料 72 4.2.2 液晶試片製程 73 4.2.3 NPs-BaTiO3/NLC/Pre-polymer混合系統 74 4.2.4 實驗流程及量測原理 74 4.2.4.1 液晶相之偏光顯微鏡觀察 74 4.2.4.2 光穿透度、視角量測 75 4.2.4.3 介電特性量測 76 4.3 結果與討論 77 4.3.1 材料製備之主體液晶材料鑑定 77 4.3.2 NPs-BaTiO3/NLC系統之物理及光電性質研究 80 4.3.3 NPs-BaTiO3/PDLC之光電性質研究 85 4.3.4 NPs-BaTiO3/PDLC系統之實物呈現 90 4.4 結論 91 4.5參考文獻 92 第五章 電場-熱能可切換雙穩態反向模式高分子穩定膽固醇液晶紋理光閥 94 中文摘要 95 Abstract 96 5.1 前言 97 5.2 實驗 99 5.2.1 實驗材料 99 5.2.2 液晶試片製程 100 5.2.2 Ch LC/Monomer之混合系統 101 5.2.3 實驗流程及量測原理 101 5.2.4 實驗流程及量測原理 102 5.2.4.1偏光顯微鏡及掃描式電子顯微鏡之觀察 102 5.2.4.2 光電表現量測 103 5.2.4.3 隔熱效果量測 103 5.3 結果與討論 105 5.3.1 Ch LC之光電性質研究 105 5.3.2 Reverse mode PSCT之高分子扭曲現象之研究 106 5.3.3 改變單體濃度、製程條件對高分子扭曲現象之研究 112 5.3.4 Reverse mode ETSB-PSCT光閥之實物呈現 115 5.3.5 Reverse mode ETSB-PSCT光閥之隔熱效果研究 115 5.4 結論 117 5.5參考文獻 118 第六章 電場-熱能可切換雙穩態正向模式高分子穩定膽固醇液晶紋理光閥 119 中文摘要 120 Abstract 121 6.1 前言 122 6.2 實驗 124 6.2.1 實驗材料 124 6.2.2 液晶試片製程 125 6.2.3 Ch LC/Monomer之混合系統 126 6.2.4 實驗流程及量測原理 126 6.4.5 偏光顯微鏡及掃描式電子顯微鏡之觀察 127 6.4.6 光電性質量測 128 6.3 結果與討論 129 6.3.1 Normal mode ETSB-PSCT之網狀高分子型態 129 6.3.2 Normal mode ETSB-PSCT之光電性質研究 131 6.3.3 Normal mode ETSB-PSCT光閥切換過程之動態穿透表現 143 6.3.4 Normal mode ETSB-PSCT之實物呈現 143 6.4 結論 144 6.5參考文獻 145 第七章 電場可切換多穩態正向模式高分子穩定膽固醇液晶紋理光閥 146 中文摘要 147 Abstract 148 7.1 前言 149 7.2 實驗 151 7.2.1 實驗材料 151 7.2.2 液晶試片製程 152 7.2.3 Ch LC/Monomer混合系統 152 7.2.4 實驗流程及量測原理 153 7.2.4.1 光電性質量測 154 7.3 結果與討論 155 7.3.1 Normal mode ETSB-PSCT之光電性質研究 155 7.3.2 Normal mode ESM-PSCT之散射態電壓驅動設計 156 7.3.3 Normal mode ESM-PSCT之多穩態特性量測 158 7.3.4 Normal modeESM-PSCT光閥之實體呈現 159 7.4 結論 161 7.5參考文獻 162 第八章 總結論 163 作 者 簡 介 167 Publication List 168

[1] V. G. Chigrinov, Liquid Crystal Devices: Physics and Applications, Artech House Publishers, Boston, London, (1999).
[2] M. Schadt and W. Helfrich, Appl. Phys. Lett. 18, 127 (1971).
[3] N. A. Clark and S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).
[4] R. B. Meyer, L. Lievert, L. Strzelecki and P. Keller, J. Physique Lett. 36, 69 (1975).
[5] A. D. L. Chandani, T. Hagiwara, Y. Suzuki, Y. Ouchi, H. Takezoe and A. Fukuda, Jpn. J. Appl. Phys. 27, L729 (1988).
[6] A. D. L. Chandani, E. Gorecka, Y. Ouchi, H. Takezoe and A. Fukuda, Jpn. J. Appl. Phys. 28, L1265 (1989).
[7] M. Oh-e and K. Kondo, Appl. Phys. Lett. 67, 3895 (1995).
[8] P. J. Collings, Michael Hird, Introduction to Liquid Crystals Chemistry and Physics, Taylor & Francis, London, (1996).
[9] 楊怡寬、郭蘭生、鄭殷立編譯,液晶化學及物理入門,偉明圖書有限公司 (2001)。
[10] 劉瑞祥譯,液晶之基礎與應用,國立編譯館出版 (1996)。
[11] F. Reinitzer, Monatshefte, Monatshefte fur Chemie 9, 421 (1888).
[12] F. Reinitzer, Monatshefte, Ann. Physik. 27, 213 (1908).
[13] O. Lehmann, Z. Physik. Chem. 4, 462 (1889).
[14] O. Lehmann, Z. Ann. Physik. 25, 852 (1908).
[15] G. Friedel, Ann. Physik. 18, 273 (1922).
[16] G. W. Gray, Thermotropic Liquid Crystals, John Wiley & Sons, New York, (1987).
[17] F. Rondelez, H. Arnould and C. J. Gerritsma, Phys. Rev. Lett. 28, 735 (1972).
[18] B. Bahadur, Liquid Crystal: Applications and Uses, World Scientific, Singapore (1990).
[19] S. Chandrasekhar, B. K. Sadashiva and K. A. Suresh, Pramana 9, 471 (1977).
[20] I. C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals, World Scientific, Singapore, (1993).
[21] P. J. Collings, Liquid Crystals: Nature's Delicate Phase of Matter, Princeton University Press, New Jersey, (1990).
[22] S.-T Wu, D. Coates and E. Bartmann, Mol. Cryst. Liq. Cryst. 10, 635 (1991).
[23] C. W. Oseen, Trans. Faraday Soc. 29, 883 (1933).
[24] H. Zocher, Trans. Faraday Soc. 29, 945 (1933).
[25] F. C. Frank, Disc. Faraday Soc. 25, 19 (1958).
[26] S. T. Lagerwall, Ferroelectric and Anti ferroelectric Liquid Crystals, Wiley-VCH, Weinheim, (1999).
[27] F. Gouda, K. Skarp and S. T. Lagerwall, Mol. Cryst. Liq. Cryst. 209, 99 (1991).
[28] C. Escher, T.Geelhear and E. Bohm, Liq Cryst. 3, 469 (1988).
[29] N. A. Vaz, G. W. Smith and P. S. Drzaic, J. Appl. Phys. 60, 2142 (1986).
[30] J. W. Doane, N. A. Vaz, B. G. Wu and S. Zumer, Appl. Phys. Lett. 48, 269 (1986).
[31] N. A. Vaz, G. W. Smith and G. P. Montgomery, Jr., Mol. Cryst. Liq. Cryst. 146, 17 (1987).
[32] J. L. West, Mol. Cryst. Liq. Cryst. 157, 427 (1988).
[33] P. S. Drzaic, Liquid Crystal Dispersions, World Scientific, Singapore, (1995).
[34] J. L. Ferfason, US Patent, 4,048,358, (1977).
[35] J. L. Fergason, SID Int. Symp. Digest of Paper 16, 68 (1985).
[36] H. G. Craighead, J. Cheng and S. Hackwood, Appl. Phys. Lett 40, 22 (1982).
[37] P. S. Paul, J. Appl. Phys. 60, 2142 (1986).
[38] T. Kajiyama, Y. Nagata, E. Maemura and M. Takayanagi, Chem. Lett. 8, 679 (1979).
[39] G. W. Smith and N. A. Vaz, Liq. Cryst. 3, 543 (1988).
[40] J. D. Margerum, A. M. Lackner, E. Ramos, K. C. Lim and W. H. Smith, Jr., Liq. Cryst.1477 (1989).
[41] A. Miyamoto, H. Kikuchi, Y. Morimura and T. Kajiyama, New Polym. Mater. 2, 27 (1990).
[42] N. A. Vaz, G. W. Smith and G. P. Montgomery, SPIE Liq. Cryst. Displays and Applic 70135 (1990).
[43] Jain S. C., Rout D. K. and Chandra S., Mol. Cryst. Liq. Cryst. 188, 251 (1990).
[44] R. Stannarius, G. P. Crawford, L. C. Chien and J. W. Doane, J. Appl. Phys. 70, 135 (1991).
[45] W. C. Chiang, G. H. Hsiue, J. H. Liu, J. J. Liang and C. C. Chen, SPIE Display Tech. 1815, 118 (1992).
[46] E. Shimada and T. Uchida, Jpn. J. Appl. Phys. 31, 352 (1992).
[47] W. Ahn, C. Y. Kim and S. C. Kim, Macromolecules 25, 5002 (1992).
[48] C. H. Noh, J. E. Jung, J. Y. Kim, D. S. Sakong and K. S. Choi, Mol. Cryst. Liq. Cryst. 237 299 (1993).
[49] H. Takatsu, K. Takeuchi and Y. Umezu, Mol. Cryst. Liq. Cryst. 225, 81 (1993).
[50] G. W. Smith, Mol. Cryst. Liq. Cryst. 241, 77 (1994).
[51] S. J. Klosowicz and J. Smua, Mol. Cryst. Liq. Cryst. 249, 163 (1994).
[52] C. Serbutoviez, J. G. Kloosterbore, H. M. J. Boots and F. J. Touwslager, Macromolecules 29, 7690 (1996).
[53] Y. Hirai, S. Niiyama, H. Kumaim and T. Gunjima, Proc. SPIE. 1257, 2 (1990).
[54] D. -K. Yang, L. -C. Chien and J. W. Doane, Appl. Phys. Lett. 60, 3102 (1992).
[55] D. -K. Yang, J. L. West and J. W. Doane, Appl. Phys. Lett. 76, 1331 (1994).
[56] I. Dierking, L. L. Kosbar, A. Afzali-Ardakani , A. C. Lowe and G. A. Held, J. Appl. Phys. 81, 3007 (1997).
[57] I. Dierking, L. L. Kosbar, A. C. Lowe and G. A. Held, Liq. Cryst. 24, 387 (1998).
[58] I. Dierking, L. L. Kosbar, A. C. Lowe and G. A. Held, Liq. Cryst. 24, 397 (1998).
[59] I. Dierking, Adv. Mater. 12, 167 (2000).
[60] S. -T. Wu, Reflective Liquid Crystal Displays, Wiley-VCH, New York, (2001).
[61] G. Crawford and S. Zumer, Liquid Crystals in Complex Geometries Formed by Polymer and Porous Networks, Taylor & Francis, London, (1996).

無法下載圖示 全文公開日期 2016/06/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE