簡易檢索 / 詳目顯示

研究生: 黃國志
Kuo-chih Huang
論文名稱: 以低溫水熱法合成Ce0.8Bi0.2-xMxO1.9(M=Sm、Er、Dy)固態氧化物燃料電池電解質與其電化學性質之研究
Synthesis and Electrochemical Properties of Ce0.8Bi0.2-xMxO1.9 (M=Sm、Er、Dy) Prepared by a Low Temperature Hydrothermal Method for SOFC Electrolyte
指導教授: 蕭敬業
Ching-Yeh Shiau
口試委員: 黃炳照
Bing-Joe Hwang
周澤川
Tse-chuan Chou
楊明長
Ming-chang Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 153
中文關鍵詞: 固態氧化物燃料電池電解質低溫水熱法電永沉積
外文關鍵詞: SOFC, Electrolyte, Low temperature hydrothermal method, Electrophoretic deposition
相關次數: 點閱:408下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主旨為以低溫水熱法合成中低溫(500~700℃)Ce0.8Bi0.2-xMxO1.9(M=Sm、Er、Dy)SOFC電解質,以取代傳統YSZ( ytria stabled zirconia )材料,並藉由研究其晶體結構、摻雜後的氧空洞變化、導電率和活化能。在所有摻雜組成 以Ce0.8Bi0.05Sm0.15O1.9在700 ℃的離子導電率最高,約為5.21×10-2 Scm-1,此時活化能為0.6891 eV,由實驗的結果來看,以交流阻抗量測摻雜異質不等價金屬離子的CeO2系電解質是可以有效提升離子導電度(純CeO2在900℃離子導電率7.37×10-4 Scm-1),但是對於摻雜異價金屬於CeO2所產生的氧缺陷不是這麼明朗,為了更加瞭解氧缺陷對離子導電度的貢獻,吾人以在不同燒結溫度Ce0.8Bi0.05Sm0.15O1.9電解質進行拉曼散射光譜分析,以F2g band 和oxygen vacancy band 的比值(I462/I550)視為氧空洞濃度的強弱,隨燒結溫度而提升,I462/I550比值就為之提升, 燒結溫度的改變,不只是改變了氧空洞濃度的強弱,也對錠片的緻密性有很大的影響,综合各個考量下,在燒結溫度1300 ℃得最佳的離子導電度。
    由晶體結構、拉曼分析與阻抗分析的結果來看,本研究已成功地以低溫水熱法來合成奈米級、共摻雜異質不等價的金屬離子的CeO2系的電解質,但為了將來可配合電泳沉積(electrophoresis deposition,EPD)技術,製造以電極為基材的電解質薄膜,吾人先研究其反應機制,以求更了解整個電泳沉積中,電荷的來源,以利將來電泳沉積的研究。在經過紫外光可見光譜儀(UV/vis)、傅立葉轉換紅外光光譜儀(FTIR)、拉曼散射光譜儀(Raman)、固態核磁共振儀(NMR)之分析後,建立其反應機制,因碘加入有機溶劑時,會造成pH值的變化,隨著反應時間增加,溶液的pH值會逐漸上升,此時溶液反應生成I-離子及I3-離子,殘存的碘逐漸反應完,最後溶液只剩I-,所以吾人視pH值跟I3-離子為碘與有機溶劑反應是否完全的指標。


    The aim of this study is to develop a low temperature hydrothermal method in synthesizing Ce0.8Bi0.2-xMxO1.9(M=Sm,Er,Dy) solid electrolytes, which is operating at intermediate temperatures (500 ℃-700 ℃) for solid oxide fuel cells (SOFC). The traditional YSZ-based solid electrolytes show very low ionic conductivities during this temperature range and research on the development of solid electrolytes alternative to YSZ is of great importance. The corresponding crystal structure, oxide ion vacancies, conductivity, and activation energy after dopants are thoroughly studied and discussed. Among the various dopants studied, Ce0.8Bi0.05Sm0.15O1.9 exhibited the highest conductivity of about 5.21×10-2 Scm-1 at 700 ℃ and the activation energy is found to be 0.6891 eV. By AC-Impedence, the improvement in ionic conductivity of ceria-based solid electrolyte (conductivity of pure ceria oxide at 900 ℃ is 7.37×10-4 Scm-1) with the amount of doping metal ion with different charges can be reasonably understood. We also investigated the variations in conductivity caused by oxide ion vacancies. With Raman scattering spectrum, we analyzed Ce0.8Bi0.05Sm0.15O1.9 at different sintering temperatures. From the results obtained from various analysis techniques, we found that 1300 ℃ is the best sintering temperature. The Ce0.8Bi0.05Sm0.15O1.9 sintered at 1300 ℃ exhibited promising density, oxide ion vacancies and conductivity.
    Our future interest is to fabricate thin electrolyte film on the anode-supported intermediate temperature SOFC by electrophoresis deposition (EPD) method. As the charge of particle is an important factor which determines the efficacy of EPD process, herein we study the reaction mechanism of EPD. After following UV/Vis, FTIR, Raman, NMR during EPD process, we developed the reaction mechanism. As iodine is added into the organic solvent, the pH value of solution will increase gradually. During the course of reaction I- and I3- are formed. However, at the end of the reaction, there is only I- in the solution. These results indicate that both the pH and formation of I3- are dependent on the time of reaction between iodine and organic solvent.

    中文摘要……………………………………………………………I 英文摘要………………………………………………………………III誌謝……………………………………………………………………V目錄…………………………………………………………………VI 圖目錄………………………………………………………………XI 表目錄…………………………………………………………XVII 符號說明…………………………………………………………XVIII 第一章 緒論............................................................................................1 1.1前言..................................................................................................1 1.2燃料電池的優點...............................................................................6 1.3 研究動機.........................................................................................7 第二章 原理與文獻回顧........................................................................8 2.1 固態氧化物燃料電池(SOFC)之基本理.......................................8 2.2燃料電池電化學原理概述...............................................................9 2.3 固態氧化物燃料電池之結構.......................................................12 2.3.1螢石結構(Fluorite structure,AO2)..........................................13 2.3.2 鈣鈦礦結構(Perovskite, ABO3)..........................................14 2.4固態氧化物燃料電池(SOFC)之種類.............................................16 2.5 固態氧化物燃料電池(SOFC)優點...............................................22 2.6 SOFC電解質材料..........................................................................22 2.6.1 CeO2系統................................................................................23 2.6.2 Bi2O3系統...............................................................................26 2.7 其他系統.......................................................................................31 2.8 粉體製備......................................................................................32 2.8.1 共沈澱法..……..…………………..…………………..……33 2.8.2 溶膠-凝法..............................…....…………..…………..…33 2.8.3 水熱法...……......…..…....….…..…....…………..…....……36 2.9 電泳沉積(EPD).............................................................................39 2.9.1 膠體電荷動力學及電泳沉積概論 .......................................39 2.9.2 質子生成機制文獻回顧........................................................39 第三章 實驗…………………………….……..…....…………..….…..42 3.1儀器設備…………………………………………………….…...42 3.2實驗藥品…………………….…..……………………………….43 3.3實驗流程………………………………………………………….44 3.3.1 電解質粉末之製備………………………………………....45 3.3.1.1 CBM(Ce0.8Bi0.2-xMxO1.9 ,X= 0~0.2)……………….…...45 3.3.1.2 煆燒(Calcination) ……………………………………47 3.3.1.3 塊材成形(Forming) ………………………………….47 3.3.1.4 塊材燒結(Sintering) ………………..……………....47 3.3.1.5 電解質阻抗測試試片製作…………………………...48 3.4 材料鑑定分析與儀器原理……………………………………...47 3.4.1 SEM 表面影像分析……………………………………….50 3.4.2 EDX元素分析…….……………………………….…...50 3.4.3 XRD檢測材料結晶結構….…………………………....50 3.4.4密度量測………………………………….………...…….52 3.4.5 AC-Impedance交流阻抗電化學特性測試…………….. .53 3.4.6電解質交流阻抗之量測…………………………………..56 3.4.7 活化能(Activation energy)計算………..…………….....57 3.4.8 拉曼散射原理…………..……..……………………........58 3.4.9共振拉曼散射原理 ....... ..... ...............................................61 第四章 實驗結果………....………....………....………....………....…62 4.1 Ce0.8Bi0.2-xMxO1.9電解質材料-低溫水熱法………..…………....62 4.1.1 X-Ray繞射結構分析…………………...….…....…..…......62 4.1.2 SEM觀察粉末之表面影像……………………..................67 4.1.3 EDX粉末成份組成鑑定….……………..….……….......70 4.1.4 穿透式電子顯微鏡影像………………………………......71 4.1.5 BDC摻雜第三元素對拉曼光譜的影響………………......73 4.1.6 粉末材料的燒結…………………….…………………….78 4.1.6.1 SEM觀察燒結後錠塊之表面影像………………….80 4.1.6.2相對密度之計算…….………………..………………83 4.1.6.3 XRD分析燒結後相穩定性………….…………..…..84 4.1.7 交流阻抗量測………………..…………………....………86 4.1.7.1 BDC摻雜Sm之影響…………..……….....................86 4.1.7.2 BDC摻雜Er之影響....................................................92 4.1.7.3 BDC摻雜Dy之影響....................................................97 4.2 CB5S15在不同燒結溫度之研究..............................................103 4.2.1 CB5S15X-Ray繞射結構分析............................................103 4.2.2 CB5S15在不同燒結溫度的顯微組織.………………..…105 4.2.3 CB5S15在不同燒結溫度的電性分析與活化能計算.…..107 4.2.4 CB5S15在不同燒結溫度的拉曼光譜分析.......................111 4.3電泳沉積(electrophoretic deposition)…..…….............................114 4.3.1 In-situ UV.............................................................................115 4.5.2 FTIR光譜分析....................................................................118 4.5.3 In-situ Raman.......................................................................119 4.5.4 NMR………………………………………………………121 第五章 综合討論………………………………………………..…....125 5.1 低溫水熱法合成之電解材料其結構、電性、活化能之討論...125 5.2 CB5S15在不同燒結溫度對電性、活化能之討論…………....133 5.3 電泳沉積懸浮液反應機制.......................................................137 第六章 結論.........................................................................................142 第七章 參考文獻.................................................................................144

    【1】 郭博堯 "我國天然環境限制風力發電發展." 財團法人國家政策研究基金會國政分析 092-009 (2003).
    【2】 Grove, W.R. "On Voltavic Series and the Combination of Gases by Platium. P"hilos. Mag 14 (1839).
    【3】 Tributsch, H. "Challenges for (photo)electrocatalysis research." Catalysis Today 39, 177-186 (1997).
    【4】 Kordesch, K. & Simader, G. "Fuel cells and their application." 51-166.
    【5】 Appleby, A.J. & Foulkes, F.R. Fuel Cell Handbook 7th. 1-8.
    【6】 Haile, S.M. "Fuel cell materials and components." Acta Materialia 51, 5981-6000 (2003).
    【7】 Yahiro, H., Eguchi, Y., Eguchi, K. & Arai, H. "Oxygen ion conductivity of theceria-samarium oxide system with fluorite structure." Journal of applied electrochemistry 18, 527-531 (1988).
    【8】Winkler, W. & Lorenz, H. "The design of stationary and mobile solid oxide fuel cell-gas turbine systems." Journal of Power Sources 105, 222-227 (2002).
    【9】 Hibino, T., Kuwahara, Y. & Wang, S. "Effect of electrode and electrolyte modification on the performance of one-chamber solid oxide fuel cell." Journal of the Electrochemical Society ; 146, 8, 2821-2826 (1999).
    【10】Hibino, T., Ushiki, K. & Kuwahara, Y. "New concept for simplifying SOFC system." Solid State Ionics 91, 69-74 (1996).
    【11】Fierro, V., Klouz, V., Akdim, O. & Mirodatos, C." Oxidative reforming of biomass derived ethanol for hydrogen production in fuel cell applications." Catalysis Today 75, 141-144 (2002).
    【12】Mogens Mogensen, Lindegaard, T. & Hansen, U.R. Physical "Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2." J. Electrochem. Soc. 141, 2122-2128 (1994).
    【13】 Yahiro, H., Eguchi, K. & Arai, H. "Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell." Solid State Ionics 36, 71-75 (1989).
    【14】 Tagawa, H.; Mizusaki, J.; Katou, M.; Hirano, K.; Sawata, A.; Tsuneyoshi, K. "Procedings of 2nd International Symposium on Solid Oxide Fuel Cells, F. Grosz, P. Zegers, S.C. Singhal and O. Yamamoto, Editors," Commission of the European Communities, Luxembourg (1991).
    【15】Eguchi, K. "Ceramic materials containing rare earth oxides for solid oxide fuel cell." Journal of Alloys and Compounds 250, 486-491 (1997).
    【16】Inoue, T., Setoguchi, T., Eguchi, K. & Arai, H. "Study of a solid oxide fuel cell with a ceria-based solid electrolyte." Solid State Ionics 35, 285-291 (1989).
    【17】Yahiro, H., Baba, Y., Eguchi, K. & Arai, H. "High temperature fuel cell with ceria-yttria solid electrolyte." J. Electrochem. Soc. ; Vol/Issue: 135:8, Pages: 2077-2089 (1988).
    【18】Tompsett, G.A., Sammes, N.M. & Yamamoto, O. "Ceria-yttria-stabilized zirconia composite ceramic systems for applications as low-temperature electrolytes." Journal of the American Ceramic Society 80, 3181-3186 (1997).
    【19】Dokiya, M. "Second International Meeting of Pacific Rim Ceramics Societies", Cairns, Australia (1996).
    【20】Mogensen, M., Sammes, N.M. & Tompsett, G.A. "Physical, chemical and electrochemical properties of pure and doped ceria." Solid State Ionics 129, 63-94 (2000).
    【21】Hibino, T., Kuwahara, Y. & Wang, S. "Effect of electrode and electrolyte modification on the performance of one-chamber solid oxide fuel cell." Journal of the Electrochemical Society 146, 2821-2826 (1999).
    【22】Guangshe Li, Yachun Mao, Liping Li, Shouhua Feng, Minqiang Wang, and Xi Yao. "Solid solubility and transport properties of nanocrystalline(CeO2)(1-x)(BiO1.5)(x) by hydrothermal conditions." Chemistry of Materials 11, 1259-1266 (1999).
    【23】Guangshe Li, Liping Li Shouhua Feng Minqiang Wang Liangying Zhang Xi Yaol. "An effective synthetic route for a novel electrolyte: Nanocrystalline solid solutions of (CeO2)(1-x)(BiO1.5)(x). "Advanced Materials 11, 146-149 (1999).
    【24】Verkerk, M.J. & Burggraaf, A.J. "HIGH OXYGEN ION CONDUCTION IN SINTERED OXIDES OF THE Bi//2O//3-Dy//2O//3 SYSTEM." Journal of the Electrochemical Society 128, 75-82 (1981).
    【25】Shuk, P., Wiemhofer, H.D., Guth, U., Gopel, W. & Greenblatt, M. "Oxide ion conducting solid electrolytes based on Bi2O3." Solid State Ionics 89, 179-196 (1996).
    【26】Yan, J. & Greenblatt, M. "Ionic conductivity of Bi3BaO5.5 and Bi(3-x)M(x)BaO(5.5-x/2) (M=Pb,Cd) solid solutions." Solid State Ionics 82, 209-214 (1995).
    【27】Zhao, H. & Feng, S.H. "Hydrothermal synthesis and oxygen ionic conductivity of codoped nanocrystalline Ce1-xMxBi0.4O2.6-x, M = Ca, Sr, and Ba." Chemistry of Materials 11, 958-964 (1999).
    【28】Dikmen, S., Shuk, P. & Greenblatt, M. "Hydrothermal synthesis and properties of Ce1-xLaxO2-δ solid solutions." Solid State Ionics 126, 89-95 (1999).
    【29】Lacorre, P., Goutenoire, F., Bohnke, O., Retoux, R. & Laligant, Y. "Designing fast oxide-ion conductors based on La2Mo2O9." Nature 404, 856-858 (2000).
    【30】Lee, B.I., Gupta, R.K. & Whang, C.M. "Effects of solvent and chelating agent on synthesis of solid oxide fuel cell perovskite, La0.8Sr0.2CrO3-δ." Materials Research Bulletin 43, 207-221 (2008).
    【31】Zhou, W. Ran, R. , Shao, Zong Ping ,Gu, Hong Xia "Significant impact of nitric acid treatment on the cathode performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite oxide via combined EDTA-citric complexing process." Journal of Power Sources 174, 237-245 (2007).
    【32】Magnone, E., Miyayama, M. & Traversa, E., Vol. MA 2005-02 1998 (Electrochemical Society Inc., Pennington, NJ 08534-2896, United States, Los Angeles, CA, United States; 2005).
    【33】Liu, S., Xing, C. & Qian, X. "Synthesis of La0.8Sr0.2 Co0.5Fe0.5O3 nanometer-size powders and its characterization." Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition) 33, 81-83 (2005).
    【34】Murchison, S.R. (cited by S. Somiya) (1840s).
    【35】Byrappa, K. & Yoshimura, M. Handbook of hydrothermal technology. (WILLIAM ANDREW, New York; 1998).
    【36】Ezersky, A.B., Garcimartin, A., Burguete, J., Mancini, H.L. & Perex-Garcia, C. "Hydrotheraml waves in Marangoni Convertion in a Cylindrical cylindrical container." Phys. Rev. E. 48, 4414-4422 (1993).
    【37】Cheng, M.-Y., Hwang, D.-H., Sheu, H.-S. & Hwang, B.-J. "Formation of Ce0.8Sm0.2O1.9 nanoparticles by urea-based low-temperature hydrothermal process." Journal of Power Sources 175, 137-144 (2008).
    【38】Reuss, F.F. Impériale Naturalistes de Moscow 2, 327 (1809).
    【39】Soichiro Okamura, T.T.a.N.K. "Fabrication of Ferroelectric BaTiO3 Films by Electrophoretic Deposition." Jpn. J. Appl. Phys. 32, 4182-4185 (1993).
    【40】Koura, N., Tsukamoto, T., Shoji, H. & Hotta, T. "Preparation of various oxide films by an electrophoretic deposition method: a study of the mechanism." Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers 34, 1643-1647 "(1995).
    【41】Jia, Li,L. Zhe,Huang, X.,Liu, Z.,Chen, K., Sha, X.,Li, G., Su, W.
    "Preparation of YSZ film by EPD and its application in SOFCs." Journal of Alloys and Compounds 424, 299-303 (2006).
    【42】Chen, F. & Liu, M. "Preparation of yttria-stabilized zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ substrates using an electrophoretic deposition (EPD) process." Journal of the European Ceramic Society 21, 127-134 (2001).
    【43】黃鼎翰, 以低溫水熱法合成奈米級釤及鉍摻雜鈰系固態氧化物燃料電池電解質與其電化學性質之研究, 國立台灣科技大學/材料科技研究所碩士論文 (2004)
    【44】Marques, F. & Weber, A.( 2003).
    【45】高君陶,單層奈米碳管之共振及低溫拉曼散射光譜研究,國立臺灣師範大學/物理研究所碩士論文 (2002).
    【46】. Nakajima, A., Yoshihara, A. & Ishigame, M. "Defect-induced Raman spectra in doped CeO2." Physical Review B 50, 13297 (1994).
    【47】Tadokoro, S.K. & Muccillo, E.N.S. "Effect of Y and Dy co-doping on electrical conductivity of ceria ceramics." Journal of the European Ceramic Society 27, 4261-4264 (2007).
    【48】Mineshige, A. ,Taji, T., Muroi, Y. Kobune, M. Fujii, S., Nishi, N., Inaba, M., Ogumi, Z. "Oxygen chemical potential variation in ceria-based solid oxide fuel cells determined by Raman spectroscopy." Solid State Ionics 135, 481-485 (2000).
    【49】Torrens, R., Sammes, N.M. & Tompsett, G. "Characterization of Pr- and Sm-doped Ce0.8Gd0.2O 2 -δ." Journal of Electroceramics 13, 683-689 (2004).
    【50】Zhongliang Zhan, T.-L.W., Hengyong Tu, and Zhi-Yi Lu "AC Impedance Investigation of Samarium-Doped Ceria." J. Electrochem. Soc 148, A427-A432 (2001).
    【51】Dixon, J.M. et al. "Electrical Resistivity of Stabilized Zirconia at Elevated Temperatures." Journal of the Electrochemical Society 110, 276-280 (1963).
    【52】Carlson, S.D.W.a.W.G. "Ionic conductivity of cubic solid solutions in the system CaO-Y2O3-ZrO2." Journal of the American Ceramic Society 47, 122~127 (1964).
    【53】張晏韶,以微波加熱燃燒合成法製備異質摻雜CeO2固溶體粉末應用於固體氧化物燃料電池中固態電解質之研究, 國立成功大學/資源工程學系碩士論文 (2004)
    【54】Kuharuangrong, S. "Ionic conductivity of Sm, Gd, Dy and Er-doped ceria." Journal of Power Sources 171, 506-510 (2007).
    【55】Fu, Y.-P., Tseng, C.-W. & Peng, P.-C. "Effect of bismuth addition on the electrical conductivity of gadolinium-doped ceria ceramics." Journal of the European Ceramic Society 28, 85-90 (2008).
    【56】Put, J., Maes, G., Huyskens, P. & Zeegers-Huyskens, T. "Study of the solvent effect on the Raman spectrum of I2 and IBr. Comparison with Br2 ag". Spectrochimica Acta Part A: Molecular Spectroscopy 37, 699-706 (1981).
    【57】張洪北 , 馬., 鄭永紅 , 魏開華 , 楊松成 , 錢小紅 , 劉炳玉 , 宋占軍 "應用光譜分析技術研究碘與β-環糊精結合物的結構特徵." 光譜學與光譜分析 603-606 (2001).
    【58】Kiefer, W. & Bernstein, H.J. "The UV-laser excited resonance raman spectrum of the I-3 ion." Chemical Physics Letters 16, 5-9 (1972).
    【59】Charalampopoulos, V.G., Papaioannou, J.C. & Tampouris, K.E. "A transformation I2•I-•I2-->I3-•I2 in the pentaiodide complex ([alpha]-Cyclodextrin)2•Cd0.5•I5•26H2O, detected via dielectric and Raman spectroscopy." Solid State Ionics 178, 793-799 (2007).
    【60】Kim, D.J. "Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure Mo2 oxide (M = Hf4+, Zr4+, Ce4+. Th4+. U4+) solid solutions." Journal of the American Ceramic Society 72, 1415 (1989).
    【61】Berezovsky, J., Liu, H.K. & Dou, S.X. "Conductivity and microstructure of bismuth oxide-based electrolytes with enhanced stability." Solid State Ionics 66, 201-206 (1993).
    【62】Iwahara, H., Esaka, T., Sato, T. & Takahashi, T. "FORMATION OF HIGH OXIDE ION CONDUCTIVE PHASES IN THE SINTERED OXIDES OF THE SYSTEM Bi//2O//3-Ln//2O//3 (Ln equals La-Yb)." Journal of Solid State Chemistry 39, 173-180 (1981).
    【63】Duran, P., Jurado, J.R., Moure, C., Valverde, N. & Steele, B.C.H. "HIGH OXYGEN ION CONDUCTION IN SOME Bi//2O//3-Y//2O//3(Er//2O//3) SOLID SOLUTIONS." Materials Chemistry and Physics 18, 287-294 (1987).
    【64】Battle, P.D., Catlow, C.R.A. & Moroney, L.M. "Structural and dynamical studies of δ-Bi2O3 oxide-ion conductors. II. A structural comparison of (Bi2O3)1-x(M2O3)x for M = Y, Er, and Yb." Journal of Solid State Chemistry 67, 42-50 (1987).
    【65】Jurado, J.R., Moure, C., Duran, P. & Valverde, N. "Preparation and electrical properties of oxygen ion conductors in the Bi2O3-Y2O3 (Er2O3) systems." Solid State Ionics 28-30, 518-523 (1988).
    【66】Hu, K., Chen, C., Peng, D. & Meng, G. "Bi2O3-based oxide ion conductors doped with mixed heavy rare-earth oxides." Solid State Ionics 28-30, 566-570 (1988).
    【67】Vinke, I.C., Seshan, K., Boukamp, B.A., de Vries, K.J. & Burggraaf, A.J. "Electrochemical properties of stabilized δ-Bi2O3. Oxygen pump properties of Bi2O3-Er2O3 solid solutions." Solid State Ionics 34, 235-242 (1989).
    【68】Fung, K.Z., Baek, H.D. & Virkar, A.V. "Thermodynamic and kinetic considerations for Bi2O3-based electrolytes." Solid State Ionics 52, 199-211 (1992).
    【69】Wachsman, E.D., Ball, G.R., Jiang, N. & Stevenson, D.A. "Structural and defect studies in solid oxide electrolytes." Solid State Ionics 52, 213-218 (1992).
    【70】Watanabe, A. "Phase relations of Bi2O3-rich Bi2O3-Er2O3 system: The appearance of a new stable orthorhombic phase (Bi2O3)0.72(Er2O3)0.28 against the known oxide-ion conductive hexagonal phase." Solid State Ionics 176, 2423-2428 (2005).
    【71】Yaremchenko, A.A. et al. "Direct oxidation of dry methane on nanocrystalline Ce0.8Gd 0.2O2-δ/Pt anodes." Catalysis Communications 4, 477-483 (2003).
    【72】Huang, T.J. & Wang, C.H. "Methane decomposition and self de-coking over gadolinia-doped ceria-supported Ni catalysts. "Chemical Engineering Journal 132, 97-103 (2007).
    【73】Lin, Y., Zhan, Z., Liu, J. & Barnett, S.A. "Direct operation of solid oxide fuel cells with methane fuel." Solid State Ionics 176, 1827-1835 (2005).
    【74】Huang, T.-J. & Li, J.-F. "Direct methane oxidation over a Bi2O3-GDC system." Journal of Power Sources 173, 959-964 (2007).
    【75】Huang, T.-J. & Li, J.-F. "Effect of Bi2O3 content on characteristics of Bi2O3-GDC systems for direct methane oxidation." Journal of Power Sources 181, 62-68 (2008).
    【76】Xueqing Sha , Zhe L¨u , Xiqiang Huang, Jipeng Miao, Li Jia. Xianshuang Xin , Wenhui Su. "Preparation and properties of rare earth co-doped Ce0.8Sm0.2-xYxO1.9 electrolyte materials for SOFC." Journal of Alloys and Compounds 424, 315-321 (2006).
    【77】Xu, H., Yan, H. & Chen, Z."Preparation and properties of Y3+ and Ca2+ co-doped ceria electrolyte materials for ITSOFC." Solid State Sciences In Press, Corrected Proof.
    【78】Xueqing Sha , Zhe L¨u , Xiqiang Huang, Jipeng Miao, Zhanhui Ding , Xianshuang Xin , Wenhui Su. "Study on La and Y co-doped ceria-based electrolyte materials." Journal of Alloys and Compounds 428, 59-64 (2007).
    【79】Wang, F.-Y., Chen, S. & Cheng, S. "Gd3+ and Sm3+ co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells." Electrochemistry Communications 6, 743-746 (2004).
    【80】Zajac, W. & Molenda, J. "Electrical conductivity of doubly doped ceria." Solid State Ionics 179, 154-158 (2008).
    【81】Wang, F.-Y., Cheng, S., Chung, C.-H. & Wan, B.-Z. "Y2O3 and MgO co-doped ceria based electrolytes." Journal of Solid State Electrochemistry 10, 879-885 (2006).
    【82】Lapworth, A. J. Chem. Soc. 85 (1904).
    【83】P. D. Bartlett J. Am. Chem. Soc. (1934).
    【84】Benesi, H.A. & Hildebrand, J.H. "The Absorption Spectrum of Iodine in Acetone." J. Am. Chem. Soc. 72, 2273-2274 (1950).
    【85】Solomons Fundamentals of organic chemistry.

    QR CODE