簡易檢索 / 詳目顯示

研究生: MUHAMMAD ADEEL
MUHAMMAD ADEEL
論文名稱: The estimation of calories by variables measured from a new rowing ergometer and the establishment of relationships of rowing distance, powers, and pace by comparing variables obtained by Concept II
The estimation of calories by variables measured from a new rowing ergometer and the establishment of relationships of rowing distance, powers, and pace by comparing variables obtained by Concept II
指導教授: 許維君
Wei-Chun Hsu
口試委員: Jia-Hao Chang
Jia-Hao Chang
Andes Ching-Feng Cheng
Andes Ching-Feng Cheng
Roger Lee
Roger Lee
Hsiu-Chen Lin
Hsiu-Chen Lin
許維君
Wei-Chun Hsu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 94
中文關鍵詞: VO2 regression modelscalorie estimationdistance regression modelsindoor rowing ergometerpower prediction
外文關鍵詞: VO2 regression models, calorie estimation, distance regression models, indoor rowing ergometer, power prediction
相關次數: 點閱:200下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Various metabolic, biomechanical and physical parameters are used in literature to predict oxygen consumption through regression methods. These prediction models can be the means to overcome, the use of much costly and time-consuming ways to measure calories and other associated variables of performance. Indoor rowing is a fascinating endurance and strength training exercise type. Various indoor ergometers are used now a days.
    The present study aimed to estimate the oxygen consumption or calories consumed through the prediction models developed by various parameters like distance covered (m), movement speed (m/s), ergometer resistance force (kg), handle & feet forces (N). The secondary aim was to calculate and validate the regression model for speed, distance and power for newly developed ergometer by comparing parameters from Concept II ergometer.
    This study recruited ten healthy participants and basketball athletes. The study used cortex Metalyzer for VO2 recording, polar sensor for heart rate, motion capture to measure the movement velocity and distance, handle and feet load cells for power output. The study predicted VO2 and distance prediction models for newly developed ergometer through linear multiple regression method with combination of various variables in statistical package for social sciences (SPSS) software version 21.
    The better valid and reliable predictor for distance estimation are from eccentric (R=0.81, adjusted R2=0.63, SEE=0.41 & P-value=0.000) and constant (R=0.86, adjusted R2=0.73, SEE=0.58 & P-value=0.000) resistance modes with parameters like velocity, handle force and resistance force. The eccentric mode predicts better power output from pace than other modes. The results of this study showed that distance can predict the VO2 with R=0.71, adjusted R2=0.51, standard error of estimate (SEE)=2.55 & P-value=0.000 while including all parameters improved prediction model with R=0.87, adjusted R2=0.75, SEE=0.18 & P-value=0.000.
    The movement velocity has good reliability for distance prediction. The prediction of power from pace is also reliable based on the findings of this study. The results of this study concluded that movement velocity and distance travelled are good predictor of oxygen consumption along with resistance force or total force.


    Various metabolic, biomechanical and physical parameters are used in literature to predict oxygen consumption through regression methods. These prediction models can be the means to overcome, the use of much costly and time-consuming ways to measure calories and other associated variables of performance. Indoor rowing is a fascinating endurance and strength training exercise type. Various indoor ergometers are used now a days.
    The present study aimed to estimate the oxygen consumption or calories consumed through the prediction models developed by various parameters like distance covered (m), movement speed (m/s), ergometer resistance force (kg), handle & feet forces (N). The secondary aim was to calculate and validate the regression model for speed, distance and power for newly developed ergometer by comparing parameters from Concept II ergometer.
    This study recruited ten healthy participants and basketball athletes. The study used cortex Metalyzer for VO2 recording, polar sensor for heart rate, motion capture to measure the movement velocity and distance, handle and feet load cells for power output. The study predicted VO2 and distance prediction models for newly developed ergometer through linear multiple regression method with combination of various variables in statistical package for social sciences (SPSS) software version 21.
    The better valid and reliable predictor for distance estimation are from eccentric (R=0.81, adjusted R2=0.63, SEE=0.41 & P-value=0.000) and constant (R=0.86, adjusted R2=0.73, SEE=0.58 & P-value=0.000) resistance modes with parameters like velocity, handle force and resistance force. The eccentric mode predicts better power output from pace than other modes. The results of this study showed that distance can predict the VO2 with R=0.71, adjusted R2=0.51, standard error of estimate (SEE)=2.55 & P-value=0.000 while including all parameters improved prediction model with R=0.87, adjusted R2=0.75, SEE=0.18 & P-value=0.000.
    The movement velocity has good reliability for distance prediction. The prediction of power from pace is also reliable based on the findings of this study. The results of this study concluded that movement velocity and distance travelled are good predictor of oxygen consumption along with resistance force or total force.

    Abstract............................................................................................................................................ i Acknowledgment ........................................................................................................................... iii Content........................................................................................................................................... iv LIST OF FIGURES: .................................................................................................................... viii LIST OF TABLES.......................................................................................................................... x 1. Introduction ............................................................................................................................. 1 1.1.Background: .......................................................................................................................... 1 1.2. Study Purpose:.................................................................................................................. 3 1.3. Research Questions: ......................................................................................................... 3 2. Literature review...................................................................................................................... 5 3. Methods ................................................................................................................................. 14 3.1. Participants:........................................................................................................................ 14 3.2. Ampera and Concept II experiment: (Experiment.1)..................................................... 14 3.3. Rowing graded exercise test: (Experiment.2) ................................................................ 17 3.4. Experiment equipments:................................................................................................. 20 3.5. Rowing exercise & Event Definition: ............................................................................ 21 ................................................................................................................................................... 22 3.6. Data collection Procedure: ............................................................................................. 23 3.6.1. Ampera and Concept II experiment: (Experiment.1) ............................................. 23 3.6.2. Rowing graded exercise test: (Experiment.2)......................................................... 23 3.7. Study Variables: ............................................................................................................. 24 3.8. Regression Models:........................................................................................................ 25 3.9. Data processing: ............................................................................................................. 26 3.9.1. Ampera and Concept II experiment: (Experiment.1) ............................................. 26v 3.9.2. Rowing graded exercise test: (Experiment.2)......................................................... 28 ................................................................................................................................................... 32 ................................................................................................................................................... 33 3.10. Statistical analysis: ..................................................................................................... 34 4. Results and Discussion .......................................................................................................... 35 4.1. Distance Regression Models:............................................................................................. 36 Equation.4.1.1: Constant mode: Speed vs Marker Speed, Handle Force, Ampera Resistance Force ...................................................................................................................................... 37 Equation.4.1.2: Constant mode: Speed vs Marker Speed, Ampera Resistance Force........... 37 Equation.4.1.3: Constant mode: Speed vs Marker Speed, Handle Force .............................. 38 Equation.4.1.4.: Elastic mode: Speed vs Marker Speed, Handle Force, Ampera Resistance Force ...................................................................................................................................... 39 Equation.4.1.5.: Elastic mode: Speed vs Marker Speed, Ampera Resistance Force............. 39 Equation.4.1.6.: Elastic mode: Speed vs Marker Speed, Handle Force ................................ 40 ............................................................................................................................................... 40 Equation.4.1.7: Eccentric mode: Speed vs Marker Speed, Handle Force, Ampera Resistance Force ...................................................................................................................................... 41 Equation.4.1.8: Eccentric mode: Speed vs Marker Speed, Ampera Resistance Force.......... 41 Equation.4.1.9: Eccentric mode: Speed vs Marker Speed, Handle Force ............................. 42 4.2. Power Regression Models:............................................................................................. 43 4.2.1.Constant mode: Power vs Pace..................................................................................... 44 4.2.2.Elastic mode: Power vs Pace ........................................................................................ 45 4.2.3.Eccentric mode: Power vs Pace.................................................................................... 46 . 4.3. VO2 Regression models:................................................................................................... 47 4.3.1. All Conditions: ............................................................................................................ 49 ............................................................................................................................................... 50vi Equation.4.3.1: VO2 vs Velocity ........................................................................................... 51 4.3.2. All Conditions: ............................................................................................................ 52 Equation.4.3.2: VO2 vs Distance........................................................................................... 53 4.3.3. All Conditions.............................................................................................................. 54 ............................................................................................................................................... 55 Equation.4.3.3: VO2 vs Total Force....................................................................................... 56 ............................................................................................................................................... 56 4.3.5. All Conditions.............................................................................................................. 61 ............................................................................................................................................... 62 Equation.4.3.5: VO2 vs Resistance force............................................................................... 63 ............................................................................................................................................... 63 Equation.4.3.6: VO2 vs Velocity, Distance, Ampera Resistance Force, Total Force Weight, Age, Height, BMI .................................................................................................................. 64 Equation.4.3.7: VO2 vs Velocity, Distance, Resistance force & Total Force ....................... 65 Equation.4.3.8: VO2 vs Distance, Velocity & Resistance force............................................ 66 Equation.4.3.9: VO2 vs Distance, Velocity & Total force .................................................... 67 Conclusions................................................................................................................................... 68 References..................................................................................................................................... 69 Appendix....................................................................................................................................... 72 Rowing Formulas Experiment .................................................................................................. 72 Rowing VO2 Experiment.......................................................................................................... 73 Handle Load cell Plots. I (Concept II) ...................................................................................... 74 Handle Load cell Plots. II (Ampera Constant Mode)................................................................ 75 Handle Load cell Plots. III (Ampera Elastic Mode).................................................................. 76 Handle Load cell Plots. IV (Ampera Eccentric Mode) ............................................................. 77vii Handle and Feet Load cell Plots. V (Ampera Constant Mode)................................................. 78 Handle and Feet Load cell Plots. VI (Ampera Constant Mode................................................. 79 Handle and Feet Load cell Plots. VII (Ampera Constant Mode ............................................... 80

    Akça, F. (2014). Prediction of rowing ergometer performance from functional anaerobic power,
    strength and anthropometric components. Journal of human kinetics, 41(1), 133-142.
    Baudouin, A., & Hawkins, D. (2002). A biomechanical review of factors affecting rowing
    performance. British journal of sports medicine, 36(6), 396-402.
    Bourdin, M., Messonnier, L., Hager, J.-P., & Lacour, J.-R. (2004). Peak power output predicts
    rowing ergometer performance in elite male rowers. International journal of sports
    medicine, 25(05), 368-373.
    Boyas, S., Nordez, A., Cornu, C., & Guével, A. (2006). Power responses of a rowing ergometer:
    mechanical sensors vs. Concept2® measurement system. International journal of sports
    medicine, 27(10), 830-833.
    Caplan, N., & Gardner, T. N. (2007). Optimization of oar blade design for improved performance
    in rowing. Journal of sports sciences, 25(13), 1471-1478.
    Chen, Y.-L., Chen, C.-C., Hsia, P.-Y., & Lin, S.-K. (2013). Relationships of Borg's RPE 6–20
    scale and heart rate in dynamic and static exercises among a sample of young Taiwanese
    men. Perceptual and motor skills, 117(3), 971-982.
    Concept2. Damper setting 101 Available from: http://www.concept2.com/indoorrowers/training/tips-and-general-info/damper-setting-101 Accessed: June 05, 2018. .
    Coyle, E. F., Coggan, A. R., Hopper, M., & Walters, T. J. (1988). Determinants of endurance in
    well-trained cyclists. Journal of Applied Physiology, 64(6), 2622-2630.
    Craig, N. P., Norton, K., Bourdon, P., Woolford, S., Stanef, T., Squires, B., . . . Walsh, C. (1993).
    Aerobic and anaerobic indices contributing to track endurance cycling performance.
    European journal of applied physiology and occupational physiology, 67(2), 150-158.
    Cunningham, D., Goode, P., & Critz, J. (1975). Cardiorespiratory response to exercise on a rowing
    and bicycle ergometer. Medicine and science in sports, 7(1), 37-43.
    Davoodi, R., Andrews, B. J., Wheeler, G. D., & Lederer, R. (2002). Development of an indoor
    rowing machine with manual FES controller for total body exercise in paraplegia. IEEE
    Transactions on Neural Systems and Rehabilitation Engineering, 10(3), 197-203.
    Di Prampero, P., Cortili, G., Celentano, F., & Cerretelli, P. (1971). Physiological aspects of rowing.
    Journal of Applied Physiology, 31(6), 853-857.
    Droghetti, P., Jensen, K., & Nilsen, T. (1991). The total estimated metabolic cost of rowing. FISA
    coach, 2(2), 1-4.
    Fagard, R. (2003). Athlete’s heart. Heart, 89(12), 1455-1461.
    FISA. (2010). Adaptive rowing regulations. Available from:
    http://www.worldrowing.com/medias/docs/media_360593.pdf Accessed: December 11,
    2010.
    Formaggia, L., Miglio, E., Mola, A., & Montano, A. (2009). A model for the dynamics of rowing
    boats. International journal for numerical methods in fluids, 61(2), 119-143.
    Hahn, A. (1990). Identification and selection of talent in Australian rowing. Excel, 6(3), 5-11.
    Hawkins, D. (2000). A new instrumentation system for training rowers. Journal of Biomechanics,
    33(2), 241-245.
    Hiilloskorpi, H., Fogelholm, M., Laukkanen, R., Pasanen, M., Oja, P., Mänttäri, A., & Natri, A.
    (1999). Factors affecting the relation between heart rate and energy expenditure during
    exercise. International journal of sports medicine, 20(07), 438-443.70
    Hofmann, P., Jürimäe, T., Jürimäe, J., Purge, P., Maestu, J., Wonisch, M., . . . Von Duvillard, S.
    (2007). HRTP, prolonged ergometer exercise, and single sculling. International journal of
    sports medicine, 28(11), 964-969.
    Hofmijster, M. J., Landman, E. H., Smith, R. M., & Knoek Van Soest, A. (2007). Effect of stroke
    rate on the distribution of net mechanical power in rowing. Journal of sports sciences,
    25(4), 403-411.
    Hofmijster, M. J., VAN, A. S., & DE, J. K. (2008). Rowing skill affects power loss on a modified
    rowing ergometer. Medicine and science in sports and exercise, 40(6), 1101-1110.
    Ingham, S. A., Pringle, J. S., Hardman, S. L., Fudge, B. W., & Richmond, V. L. (2013).
    Comparison of step-wise and ramp-wise incremental rowing exercise tests and 2000-m
    rowing ergometer performance. International journal of sports physiology and
    performance, 8(2), 123-129.
    Jette, M., Sidney, K., & Blümchen, G. (1990). Metabolic equivalents (METS) in exercise testing,
    exercise prescription, and evaluation of functional capacity. Clinical cardiology, 13(8),
    555-565.
    Jurimae, J., Maestu, J., Jurimae, T., & Pihl, E. (2000). Prediction of rowing performance on single
    sculls from metabolic and anthropometric variables. Journal of human movement studies,
    38(3), 123-136.
    Lester, J., Hartung, C., Pina, L., Libby, R., Borriello, G., & Duncan, G. (2009). Validated caloric
    expenditure estimation using a single body-worn sensor. Paper presented at the
    Proceedings of the 11th international conference on Ubiquitous computing.
    Lormes, W., Buckwitz, R., Rehbein, H., & Steinacker, J. M. (1993). Performance and blood lactate
    on Gjessing and Concept II rowing ergometers. International journal of sports medicine,
    14(S 1), S29-S31.
    Loudon, J. K., Cagle, P. E., Figoni, S. F., Nau, K. L., & Klein, R. M. (1998). A submaximal allextremity exercise test to predict maximal oxygen consumption. Medicine and science in
    sports and exercise, 30(8), 1299-1303.
    MacFarlane, D., Edmond, I., & Walmsley, A. (1997). Instrumentation of an ergometer to monitor
    the reliability of rowing performance. Journal of sports sciences, 15(2), 167-173.
    Mazzone, T. (1988). Sports performance series: kinesiology of the rowing stroke. Strength &
    Conditioning Journal, 10(2), 4-13.
    Minnock, M. R. (2017). Kinematic Analysis of Trunk Coordination Throughout the Rowing
    Stroke Sequence.
    Moritani, T., Nagata, A., Devries, H. A., & Muro, M. (1981). Critical power as a measure of
    physical work capacity and anaerobic threshold. Ergonomics, 24(5), 339-350.
    Nolte, V. (2011). Rowing Faster 2nd Edition: Human Kinetics.
    Padilla, P. A., Carrillo, S., Montano, E. E., Buchanan, C. A., & Dalleck, L. C. (2018). The Acute
    and Chronic Physiological Responses to Exercise with the Total Gym® Row Trainer™ in
    Adults.
    Pinheiro Volp, A., Esteves de Oliveira, F., Duarte Moreira Alves, R., Esteves, E., & Bressan, J.
    (2011). Energy expenditure: components and evaluation methods. Nutricion hospitalaria,
    26(3).
    Polar. (2018, 04 Nov 2018). Heart Rate Reserve, HRR. Retrieved from
    https://support.polar.com/en/support/Heart_Rate_Reserve__HRR71
    Russell, A. P., Rossignol, P. F. L., & Sparrow, W. A. (1998). Prediction of elite schoolboy 2000-
    m rowing ergometer performance from metabolic, anthropometric and strength variables.
    Journal of sports sciences, 16(8), 749-754. doi:10.1080/026404198366380
    Russell, A. P., Rossignol, P. L., & Sparrow, W. (1998). Prediction of elite schoolboy 2000-m
    rowing ergometer performance from metabolic, anthropometric and strength variables.
    Journal of sports sciences, 16(8), 749-754.
    Schabort, E., Hawley, J., Hopkins, W., & Blum, H. (1999). High reliability of performance of welltrained rowers on a rowing ergometer. Journal of sports sciences, 17(8), 627-632.
    Secher, N. H., Vaage, O., Jensen, K., & Jackson, R. (1983). Maximal aerobic power in oarsmen.
    European journal of applied physiology and occupational physiology, 51(2), 155-162.
    Sforza, C., Casiraghi, E., Lovecchio, N., Galante, D., & Ferrario, V. (2012). A three-dimensional
    study of body motion during ergometer rowing. The Open Sports Medicine Journal, 6, 22-
    28.
    Shimoda, M., Fukunaga, T., Higuchi, M., & Kawakami, Y. (2009). Stroke power consistency and
    2000 m rowing performance in varsity rowers. Scandinavian journal of medicine & science
    in sports, 19(1), 83-86.
    Soper, C., & Hume, P. A. (2004). Towards an ideal rowing technique for performance. Sports
    Medicine, 34(12), 825-848.
    Swain, D. P., & Leutholtz, B. C. (2007). Exercise prescription: a case study approach to the ACSM
    guidelines: Human Kinetics.
    Turpin, N. A., Guével, A., Durand, S., & Hug, F. (2011). Effect of power output on muscle
    coordination during rowing. European journal of applied physiology, 111(12), 3017-3029.
    van Ingen Schenau, G., & Cavanagh, P. (1990). Power equations in endurance sports. Journal of
    biomechanics, 23(9), 865-881.
    Vogelsang, T., Yoshiga, C., Højgaard, M., Kjaer, A., Warberg, J., Secher, N., & Volianitis, S.
    (2006). The plasma atrial natriuretic peptide response to arm and leg exercise in humans:
    effect of posture. Experimental physiology, 91(4), 765-771.
    Vogler, A. J., Rice, A. J., & Gore, C. J. (2010). Validity and reliability of the Cortex MetaMax3B
    portable metabolic system. Journal of sports sciences, 28(7), 733-742.
    Volianitis, S., & Secher, N. H. (2009). Rowing, the ultimate challenge to the human body–
    implications for physiological variables. Clinical physiology and functional imaging, 29(4),
    241-244.
    Wheeler, G. D., Andrews, B., Lederer, R., Davoodi, R., Natho, K., Weiss, C., . . . Steadward, R.
    D. (2002). Functional electric stimulation–assisted rowing: increasing cardiovascular
    fitness through functional electric stimulation rowing training in persons with spinal cord
    injury. Archives of physical medicine and rehabilitation, 83(8), 1093-1099.
    Yoshiga, C., & Higuchi, M. (2003). Rowing performance of female and

    無法下載圖示 全文公開日期 2024/02/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE