簡易檢索 / 詳目顯示

研究生: 張喆皓
Zhe-Hao Chang
論文名稱: 應用C-Vine Copula季節性風力預測之STATCOM最適選容定址
Optimal Capacity and Location for STATCOM with Seasonal Wind Power Prediction Using C-vine Copula
指導教授: 楊念哲
Nien-Che Yang
口試委員: 張建國
Chien-Kuo Chang
曾威智
Wei-Chih Tseng
謝廷彥
Ting-Yen Hsieh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 45
中文關鍵詞: 容量和位置C-vine copula多目標布穀鳥曼哈頓距離法柏拉圖前緣STATCOM
外文關鍵詞: Capacity and location, C-vine copula, MOCS, Manhattan distance method, Pareto front, STATCOM
相關次數: 點閱:203下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用多目標布穀鳥搜尋演算法,提出在具有再生能源的間歇性輸出變化下,確定靜態同步補償器(static synchronous compensator, STATCOM)之最佳容量和位置的選擇策略。基於C-vine copula對風力發電機的實功率輸出變化與時間序列進行數據擬合,分析了季節性輸出變化對STATCOM裝設位置和容量的影響。研究中考慮三個目標函數,以確定STATCOM裝置的最佳位置和容量:(1)最小化系統線路損失,(2)最小化暫態電壓指標,以及(3)最小化STATCOM容量的總成本。將多目標布穀鳥演算法與柏拉圖前緣結合,以確定四個季節的非支配解集,利用曼哈頓距離法在指定的時間區間內選擇最合適的安裝位置和容量。本研究使用DIgSILENT Power Factory 2021和MATLAB R2021b進行電力潮流計算,並藉由IEEE 39 Bus系統進行測試,以驗證所提方法之有效性。


    This study proposes a selection strategy for determining the optimal capacity and location of a static synchronous compensator (STATCOM) device under intermittent output variations of renewable energy sources using a multi-objective cuckoo search (MOCS) algorithm. The impact of seasonal output variations on the location and capacity of the STATCOM devices was analyzed based on the daily output variations of the wind turbines using C-vine copula. Three objective functions were considered to determine the optimal location and capacity of the STATCOM devices: (1) minimizing the system line losses, (2) minimizing the transient voltage indicators, and (3) minimizing the total cost of the STATCOM capacity. MOCS was combined with the Pareto front to determine the non-dominated solution sets for the four seasons. The Manhattan distance method was used to select the most suitable installation locations and capacities within a specified time interval. Power flow calculations were performed using DIgSILENT Power Factory 2021 and MATLAB R2021b. To validate the proposed method, a test experiment was conducted using an IEEE 39 bus system.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 1 1.3 研究貢獻 2 1.4 論文架構 3 第二章 理論基礎 5 2.1 機率型電力潮流 5 2.2 關聯結構演算法 5 2.3 STATCOM原理和控制模型 6 第三章 研究問題描述 8 3.1 目標函數 8 3.1.1 暫態穩定度指標 9 3.1.2 總系統損失 10 3.1.3 STATCOM成本 11 3.2 限制式 11 3.2.1 電力潮流限制 12 3.2.2 STATCOM參數限制 12 第四章 所研提優化策略 14 4.1 C-vine copula 14 4.1.1 C-vine copula架構 14 4.1.2 C-vine copula應用 15 4.2 柏拉圖最佳化 15 4.3 多目標布穀鳥演算法 16 4.4 曼哈頓距離法 19 4.5 優化策略流程 20 第五章 實驗結果與驗證 22 5.1 前言 22 5.2 測試系統 22 5.3 資料預處理 23 5.3.1 風力數據處理 23 5.3.2 模擬參數設定 23 5.4 模擬情境 24 5.5 案例分析 25 5.6 最終解選擇 29 第六章 結論與未來研究方向 31 6.1 結論 31 6.2 未來研究方向 31 參考文獻 33

    參考文獻
    [1] A. Pagnetti, M. Ezzaki, and I. Anqouda, "Impact of Wind Power Production in a European Optimal Power Flow," Electric Power Systems Research, vol. 152, pp. 284-294, Nov. 2017.
    [2] M. T. Hagh, P. Amiyan, S. Galvani, and N. Valizadeh, "Probabilistic Load Flow Using the Particle Swarm Optimisation Clustering Method," IET Generation Transmission & Distribution, vol. 12, no. 3, pp. 780-789, Feb. 2018.
    [3] W. H. Huang, K. Sun, J. J. Qi, and J. X. Ning, "Optimal Allocation of Dynamic Var Sources Using the Voronoi Diagram Method Integrating Linear Programing," IEEE Transactions on Power Systems, vol. 32, no. 6, pp. 4644-4655, Nov. 2017.
    [4] Y. Chi, Y. Xu, and R. Zhang, "Many-Objective Robust Optimization for Dynamic VAR Planning to Enhance Voltage Stability of a Wind-Energy Power System," IEEE Transactions on Power Delivery, vol. 36, no. 1, pp. 30-42, Feb. 2021.
    [5] Y. Chi, Y. Xu, and R. Zhang, "Candidate Bus Selection for Dynamic VAR Planning Towards Voltage Stability Enhancement Considering Copula-based Correlation of Wind and Load uncertainties," IET Generation Transmission & Distribution, vol. 15, no. 4, pp. 780-791, Feb. 2021.
    [6] T. Zhang and L. Yu, "Optimal Allocation of DSTATCOM Considering the Uncertainty of Photovoltaic Systems," IEEJ Transactions on Electrical and Electronic Engineering, vol. 15, no. 3, pp. 355-363, Mar. 2020.
    [7] E. Shahryari, H. Shayeghi, and M. Moradzadeh, "Probabilistic and Multi-Objective Placement of D-STATCOM in Distribution Systems Considering Load Uncertainty," Electric Power Components and Systems, vol. 46, no. 1, pp. 27-42, 2018.
    [8] Y. Xu, Z. Y. Dong, C. X. Xiao, R. Zhang, and K. P. Wong, "Optimal Placement of Static Compensators for Multi-Objective Voltage Stability Enhancement of Power Systems," IET Generation Transmission & Distribution, vol. 9, no. 15, pp. 2144-2151, Nov. 2015.
    [9] T. Han, Y. B. Chen, J. Ma, Y. Zhao, and Y. Y. Chi, "Surrogate Modeling-Based Multi-Objective Dynamic VAR Planning Considering Short-Term Voltage Stability and Transient Stability," IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 622-633, Jan. 2018.
    [10] A. M. Tahboub, M. S. El Moursi, W. L. Woon, and J. L. Kirtley, "Multiobjective Dynamic VAR Planning Strategy With Different Shunt Compensation Technologies," IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 2429-2439, May. 2018.
    [11] W. L. Zhao, Q. L. Guo, H. B. Sun, H. C. Ge, and H. F. Li, "Practical Short-Term Voltage Stability Index Based on Voltage Curves: Definition, Verification and Case Studies," IET Generation Transmission & Distribution, vol. 12, no. 19, pp. 4292-4300, Oct. 2018.
    [12] H. Park, R. Baldick, and D. P. Morton, "A Stochastic Transmission Planning Model With Dependent Load and Wind Forecasts," IEEE Transactions on Power Systems, vol. 30, no. 6, pp. 3003-3011, Nov. 2015.
    [13] X. Y. Xu, Z. Yan, M. Shahidehpour, H. Wang, and S. J. Chen, "Power System Voltage Stability Evaluation Considering Renewable Energy with Correlated Variabilities," IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3236-3245, May. 2018.
    [14] D. Villanueva, J. L. Pazos, and A. Feijoo, "Probabilistic Load Flow Including Wind Power Generation," IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1659-1667, Aug. 2011.
    [15] B. J. I. T. o. P. A. Borkowska and Systems, "Probabilistic Load Flow," no. 3, pp. 752-759, 1974.
    [16] P. Chen, Z. Chen, B. Bak-Jensen, and Ieee, "Probabilistic Load Flow: A Review," in 3rd International Conference on Electric Utility Deregulation, Restructuring and Power Technologies, Nanjing, PEOPLES R CHINA, 2008, pp. 1586-1591, 2008.
    [17] P. Jorgensen, J. S. Christensen, J. O. Tande, Ichqp, and Ichqp, "Probabilistic Load Flow Calculation Using Monte Carlo Techniques for Distribution Network with Wind Turbines," in 8th International Conference on Harmonics and Quality of Power (ICHQP 98), Athens, Greece, 1998, pp. 1146-1151, 1998.
    [18] C. L. Su, "Probabilistic Load-Flow Computation Using Point Estimate Method," IEEE Transactions on Power Systems, vol. 20, no. 4, pp. 1843-1851, Nov. 2005.
    [19] J. Usaola, "Probabilistic Load Flow with Correlated Wind Power Injections," Electric Power Systems Research, vol. 80, no. 5, pp. 528-536, May. 2010.
    [20] F. Durante and C. Sempi, "Copula Theory: An Introduction," in Copula Theory and Its Applications: Proceedings of the Workshop Held in Warsaw, pp. 3-31: Springer, Sep. 2009.
    [21] A. Samimi, M. A. Golkar, and Ieee, "A Novel Method for Optimal Placement of STATCOM in Distribution Networks Using Sensitivity Analysis by DIgSILENT Software," in Asia-Pacific Power and Energy Engineering Conference (APPEEC), Wuhan, PEOPLES R CHINA, 2011, 2011.
    [22] S. M. Abd-Elazim and E. S. Ali, "Optimal Location of STATCOM in Multimachine Power System for Increasing Loadability by Cuckoo Search Algorithm," International Journal of Electrical Power & Energy Systems, vol. 80, pp. 240-251, Sep. 2016.
    [23] Y. Chi and Y. Xu, "Multi-Objective Robust Tuning of STATCOM Controller Parameters for Stability Enhancement of Stochastic Wind-Penetrated Power Systems," IET Generation Transmission & Distribution, vol. 14, no. 21, pp. 4805-4814, Nov. 2020.
    [24] Y. Xu, Z. Y. Dong, K. Meng, W. F. Yao, R. Zhang, and K. P. Wong, "Multi-Objective Dynamic VAR Planning Against Short-Term Voltage Instability Using a Decomposition-Based Evolutionary Algorithm," IEEE Transactions on Power Systems, vol. 29, no. 6, pp. 2813-2822, Nov. 2014.
    [25] X. S. Yang and S. Deb, "Multiobjective Cuckoo Search for Design Optimization," Computers & Operations Research, vol. 40, no. 6, pp. 1616-1624, Jun. 2013.
    [26] A. B. Mohamad, A. M. Zain, and N. E. N. Bazin, "Cuckoo Search Algorithm for Optimization Problems-A Literature Review and Its Applications ," Applied Artificial Intelligence, vol. 28, no. 5, pp. 419-448, 2014.
    [27] K. P. Nguyen, G. Fujita, V. N. Dieu, and Ieee, "Optimal Placement and Sizing of Static VAR Compensator Using Cuckoo Search Algorithm," in IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 2015, pp. 267-274, 2015.
    [28] S. Q. Ye, K. Q. Zhou, C. X. Zhang, A. M. Zain, and Y. Ou, "An Improved Multi-Objective Cuckoo Search Approach by Exploring the Balance Between Development and Exploration," Electronics, vol. 11, no. 5, Mar. 2022.
    [29] W. Y. Chiu, G. G. Yen, and T. K. Juan, "Minimum Manhattan Distance Approach to Multiple Criteria Decision Making in Multiobjective Optimization Problems," IEEE Transactions on Evolutionary Computation, vol. 20, no. 6, pp. 972-985, Dec. 2016.

    無法下載圖示 全文公開日期 2033/07/20 (校內網路)
    全文公開日期 2033/07/20 (校外網路)
    全文公開日期 2033/07/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE