簡易檢索 / 詳目顯示

研究生: 林暐迪
Wei-Di Lin
論文名稱: Mach-Zehnder干涉儀用於寬頻波長濾波器
Broadband Wavelength Filter using Mach-Zehnder Interferometer
指導教授: 徐世祥
Shih-Hsiang Hsu 
口試委員: 張勝良
Sheng-Lyang Jang
李志堅
Chih-Chien Lee
何文章
Wen-Jeng Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 94
中文關鍵詞: Mach-Zehnder干涉儀寬頻耦合器濾波器粗分波多工
外文關鍵詞: Mach-Zehnder Interferometer, Broadband, Coupler, Filter, CWDM
相關次數: 點閱:265下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

目前以矽線波導為架構設計出的分波多工器(Wavelength Division Multiplexer, WDM)主要有三種,陣列波導光柵(Arrayed Waveguide Gratings, AWG)、階梯光柵(Echelle Grating)以及馬赫詹德延遲干涉儀(Delayed Mach-Zehnder Interferometer, MZI)。陣列波導光柵儘管製程較為簡單,但是將面臨比其他分波多工器更加嚴峻的相位問題;階梯光柵則較其他元件有更大的損耗問題;相對來說,馬赫詹德延遲干涉儀儘管輸出通道數不易增加和光隔離度表現較差,但是製程簡單以及較容易實現平頂帶寬(Flat Top Passband)的現象,馬赫詹德延遲干涉儀設計分波多工器不僅能夠達到低損耗的需求,且若要應用在長距離傳輸,則可以使用粗分波多工器(Couse Wavelength Division Multiplexing, CWDM),CWDM與密分波多工器(Dense Wavelength Division Multiplexer, DWDM)的主要區別在於通道間距(Channel Spacing),CWDM具有更寬的通道間距,且目前業界普遍的通道間距標準為20 nm,然而,若要達到如此寬的通道間距要求,寬頻耦合器便扮演了一個極為重要的角色。
在本論文中,我們以分光比分別為0.5與0.2之馬赫詹德方向耦合器(Mach-Zehnder Directional Coupler, MZDC)和0.05的方向耦合器(Directional Coupler, DC)組合成的三級(Three-stage)晶格濾波器(Lattice Filter)和另一以分光比為0.5與0.3的馬赫-詹德方向耦合器和0.05的方向耦合器組合成的二級(Two-stage)晶格濾波器串接組成一串擾損耗(Crosstalk)可達15 dB,並且工作波段可從1500 nm至1650 nm的串接型濾波器(Cascaded Filter)。同時更進一步討論馬赫-詹德方向耦合器中因彎曲波導結構之耦合相位對於兩個耦合區域分別貢獻高達約20%和30%的相位,因此在設計時須考慮此彎曲相位的影響,避免因彎曲相位導致分光比異常,進而影響寬頻波長濾波器的串擾損耗,理論計算顯示將有5 dB的影響。


There are three kinds of silicon waveguide based wavelength division multiplexer (WDM), such as arrayed waveguide gratings (AWG), echelle gratings and delayed Mach-Zehnder interferometer (DMZI), for optical fiber communications. Although AWG fabrication is relatively simple, the phase error from array waveguides will easily be induced from the process. Compared with AWG and DMZI, echelle grating has relatively higher optical loss. Even though the DMZI output channel count increases with the footprint besides a lack of significant extinction ratio, it is utilized here to demonstrate a flat top passband through easy process. The difference between CWDM and DWDM is the channel spacing, 0.2 nm to 1.2 nm for DWDM and 20 nm for CWDM. In order to achieve CWDM communication, a broadband coupler plays a very important role.
In this thesis, a three-stage lattice filter is composed of Mach-Zehnder directional couplers (MZDC) with splitting ratios of 0.5, 0.2, and 0.2 connected to a directional coupler (DC) ratio of 0.05. Followed by two-stage lattice filter with MZDC ratios of 0.5 and 0.3 connected to a DC ratio of 0.05, the cascaded five stage could demonstrate a wavelength filtering function with 15-dB crosstalk from 1500 nm to 1650 nm in the operating wavelengths. Furthermore, the bend structures of MZDC will contribute significant phase up to 30% and degrade the 5-dB crosstalk of MZDC based optical filter if appropriate compensation is not applied.

摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1簡介 1 1.2 研究動機 1 1.3 論文架構 3 第二章 波導理論與特性 4 2.1 波導結構 4 2.2 單多模條件 6 2.3 雙折射效應 8 2.4 波導傳播損耗 10 第三章 矽線波導光功率分光元件理論與設計 19 3.1 多模干涉儀模擬 19 3.2 非等比例多模干涉儀 22 3.3 方向耦合器基本理論 25 3.4 超模 30 3.5 馬赫詹德方向耦合器 31 3.5.2 馬赫詹德方向耦合器設計 31 3.5.1 馬赫詹德方向耦合器理論 31 3.6 方向耦合器與馬赫詹德方向耦合器之模擬 39 3.6.1 方向耦合器模擬 39 3.6.2 馬赫詹德方向耦合器模擬 42 第四章 光功率耦合器應用於馬赫詹德延遲儀 47 4.1馬赫詹德延遲干涉儀理論 47 4.2理想型馬赫詹德延遲干涉儀 48 4.3非理想型馬赫詹德延遲干涉儀 50 第五章 寬頻波長濾波器設計與模擬 52 5.1 晶格濾波器設計 52 5.2 串接型濾波器設計 60 5.3 馬赫詹德方向耦合器應用於串接型濾波器 66 5.4 寬頻波長濾波器 75 第六章 量測結果與分析 78 6.1 寬頻耦合器量測 78 6.2 寬頻波長濾波器量測 86 第七章 結論 89 7.1 結論 89 參考文獻 90

[1]F. Horst , W. M. J. Green , S. Assefa , S. M. Shank , Y. A. Vlasov, and B. J. Offrein” Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing” Optics Express 11652, Vol. 21, No. 10,2013.
[2]A. Takagi, K. Jinguji and M. Kawachi, “Broadband silica-based optical waveguide coupler with asymmetric structure,” Electronics Letters, Vol. 26, No. 2, pp. 132-133, 1990.
[3]A. Takagi, K. Jinguji and M. Kawachi, “Wavelength characteristics of (2 × 2) optical channel-type directional couplers with symmetric or nonsymmetric coupling structures,” Journal of Lightwave Technology, Vol. 10, No. 6, pp. 735-746, 1992.
[4]Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Optics Express, Vol. 23, No. 3, pp. 3795-3808, 2015.
[5]S. Tseng, “Robust coupled-waveguide devices using shortcuts to adiabaticity,” Optics Letters, Vol. 39, No. 23, pp. 6600-6603, 2014.
[6]X. Chen, R. Wen, and S. Tseng, “Analysis of optical directional couplers using shortcuts to adiabaticity,” Optics Express, Vol. 24, No. 16, pp. 18322-18331, 2016.
[7]C. R. Doerr, M. Cappuzzo, E. Chen, A.Wong-Foy, L. Gomez, A. Griffin, and L. Buhl, “Bending of a planar lightwave circuit 2 × 2 coupler to desensitize it to wavelength, polarization, and fabrication changes,” IEEE Photonics Technology Letters, Vol. 17, No. 6, pp. 1211-1213, 2005.
[8]H. Morino, T. Maruyama and K. Iiyama, “Reduction of wavelength dependence of coupling characteristics using Si optical waveguide curved directional coupler,” Journal of Lightwave Technology, Vol. 32, No. 12, pp. 2188-2192, 2014.
[9]S. Chen, Y. Shi, S. He, and D. Dai, “Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers,” Optics Letters, Vol. 41, No. 4, pp. 836-839, 2016.
[10]Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photonics Technology Letters, Vol. 8, No. 3, pp. 7101408 (2016).
[11]J. Senior and M. Y. Jamro, Optical Fiber Communications: Principles and Practice, 3rd ed, Financial Times/Prentice Hall, 2009.
[12]R. A. Soref , J. Schmidtchen and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE Journal of Quantum Electronics, Vol. 27, No. 8, pp. 1971-1974 , 1991.
[13]S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-mode and polarization-independent Silicon-on-Insulator waveguides with small cross section,” Journal of Lightwave Technology, Vol. 23, No. 6, pp. 2103-2111, 2005.
[14]T. Aalto, Microphotonic silicon waveguide components: VTT Technical Research Centre of Finland, 2004.
[15]K. W. Ang, G.Q. Lo , “Avalanche photodiodes: Si charge avalanche enhances APD sensitivity beyond 100 GHz,” Laser Focus World, Vol. 46, No. 8, pp. 41, 2010.
[16]P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J.V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D.V. Thourhout, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technology Letters, Vol. 16, No. 5, pp. 1328-1330, 2004.
[17]Y. Hbino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, No. 6, pp. 1090-1101, 2002.
[18]A. Sakai, G. Hara, and T. Baba, “Sharply bent optical waveguide on silicon-on-insulator substrate,” Proceedings of SPIE, Vol. 4283, pp. 610-618, 2001.
[19]E. A. J. Marcatili, “Bends in optical dielectric guides,” The Bell System Technical Journal, pp. 2103-2132, 1969.
[20]M. Heiblum, and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE Journal of Quantum Electronics, Vol. QE-11, No. 2, pp. 75-83, 1975.
[21]Y. A. Vlasov, and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Optics Express, Vol. 12, No. 8, pp. 1622-1631, 2004.
[22]V. Subramaniam, G. N. D. Brabander, D. H. Naghski, and J. T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” Journal of Lightwave Technology, Vol. 15, No. 6, pp. 990-997, 1997.
[23]K. K. Lee, D. R. Lim, H.C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Applied Physics Letters, Vol. 77, No. 11, pp. 1617-1619, 2000.
[24]D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell System Technical Journal, Vol. 48, No. 10, pp. 3187-3215, 1969.
[25]F. P. Payne, J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Optical and Quantum Electronics, Vol. 26, pp. 977-986, 1994.
[26]M. Heiblum, and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE Journal of Quantum Electronics, Vol. QE-11, No. 2, pp. 75-83, 1975.
[27]F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, "Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides," IEEE Photonics Technology Letters, Vol. 16, pp. 1661-1663, 2004.
[28]Q. Dai, M. Bachmann, W. Hunziker, P.A. Besse and H.3 Melchior, “Arbitary ratio power splitters using angled silica silicon multimode interference coupler,” Electron. Letters., Vol. 32, No. 17,pp. 1576-1577, 1996.
[29]D. S. Levy, Y.M. Li, R. Scarmozzino, and R.M. Osgood, “A multimode interference-based variable power splitter in GaAs-AlGaAs,” IEEE photon. Technol. Letters., Vol. 9, No. 10, pp. 1373-1375, 1997.
[30]T.T. Lee, L.W. Cahill, “The design of multimode interference couplers with arbitrary power splitting ratios on an SOI platform,” Conference Proceedings-Lasers and Electro-Optics Society Annual Meeting-LEOS, art. No. 4688648, pp. 378-379, 2008.
[31]T. Saida, A. Himeno, M. Okuno, A. Sugita, and K. Okamoto, “Silica based 2x2 multimode interference coupler with arbitrary power splitting ratio,” Electron. Letters., Vol. 32,No. 23, pp.2031-2033, 1999.
[32]P. A. Besse, E. Gini, M. Bachman, and H. Melchior, “New 2x2 and 1x3 multimode interference coupler with free selection of power splitting ratios,” IEEE J. Lightwave Technol., Vol. 14, No. 10,pp.2286-2293, 1996.
[33]D. A. Arrioja, P. L. LiKamWa, C. V. Ordonez, and J. J. Sanchez-Mondragon, “Tunble multimode interference coupler,” Electron. Letters., Vol. 43, No. 13 ,pp. 714-716, 2007.
[34]K. -C. Shu, Y. Lai, D.-W. Huang, “A novel S-shape 1x2 thermo-optic polymer waveguide switch,” Conference, OFC 2002, Vol. 70, 2002.
[35]S. C. M. Lidgate, P. Sewell, T. M. Benson, “Conformal mapping: Limitations for waveguide bend analysis,” IEEE Proceedings: Science, Measurement and Technology, Vol. 149, No. 5, pp.262-266, 2002
[36]S. H. Hsu and Y. L. Tasi, “Tapping signal power on 12um-thick SOI optical waveguide for performance monitoring,” Electron. Letters., Vol. 45, No. 3, pp. 161-163, 2009.
[37]A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering), Oxford, 2006.
[38]J. M. Liu, “Photonic devices,” Cambridge University Press, pp. 206-209, 2005.
[39]S. H. Hsu, “Signal power tapped with low polarization dependence and insensitive wavelength on silicon-on-insulator platforms,” Journal of the Optical Society America B, Vol. 27, No. 5, pp. 941-947, 2010.
[40]B. E. Little, and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using mach-zehnder structures,” IEEE Photonics Technology Letters, Vol. 9, No. 12, pp. 1607-1609, 1997.
[41]R. März ,“Integrated Optics, Design and Modelling, ”Artech House Publishers, Boston-London, 1995.
[42]C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (John Wiley &Sons Inc.), 2001.

QR CODE