簡易檢索 / 詳目顯示

研究生: 章陽中
Yang-Chung - Chang
論文名稱: 基於改進的趨勢分類模型運用於天氣預測
Trend Classification Based Weather Forecast
指導教授: 蘇順豐
Shun-Feng Su
口試委員: 李祖添
Tsu-Tian Lee
莊鎮嘉
Chen-Chia Chuang
王乃堅
Nai-Jian Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 126
中文關鍵詞: 趨勢分類模式大數據氣象局天氣預測卡爾曼濾波器
外文關鍵詞: Trend, Classification mode, Big data, Bureau of Meteorology, Weather forecast, Kalman Filter
相關次數: 點閱:327下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究貢獻在於提出一個有別於傳統技術的趨勢分類模型的新型天氣預報:
    運用溫度歷史資料於未來溫度預測,以台北為例。由於考慮的數據量是很巨大的,
    所提出的方法也可以被視為大數據資料分析,即為:使用數據分析解決大量數據。
    方法是運用溫度的歷史資料作為資料庫並透過資料分析、建模來預測氣溫。通常,
    每日溫度以區間間隔於建模,因此,在此研究的方法中,上限和下限(通常表示
    當日最高溫、最低溫)是被考慮用於匹配/預測,而趨勢分類是提供一個層次分
    類結構的模型,先使用溫差趨勢概念再整合傳統分類方法,使此模型能將匹配點
    更具意義,而基於這模式,將可使溫度預測模型成功被使用。而在趨勢分類模型
    中,更考量重疊的概念以及數據相關的對應關係,使模式匹配更有意義。並在趨
    勢分類後,使用聚類方法來定義所匹配的模式。考慮重疊的想法與簡潔,本研究
    使用上限與下限做為資料的區隔,更以上限及下限表示一天的溫度型態。本研究
    的方法是在進行模糊分類之前先做趨勢分析,而溫度的劇烈變化也被考慮並且在
    模式定義過程中被視為異常值以避免模式誤差過大。在處理數據時,透過不同模
    式將資料型態做分別不同的處理方式。從實驗結果得知,透過此研究的方法在預
    測一天中的最高溫度之平均誤差與新聞預測(中央氣象局預測)相比,平均誤差至
    少低0.5℃;最低溫度之平均誤差與新聞預測(中央氣象局預測)相比,平均誤差
    至少低0.8℃。換句話說,此研究之預測結果與氣象局做出的傳統預測是一致的,
    甚至更好。此外,透過數據多方考量的技術概念,本項研究使用靜態卡爾曼濾波
    器,將我們方法的預測結果和來自氣象局預測的結果組合,從實驗結果可以明顯
    看出,這種結合性的方法,實際上比單一個方法做出的預測結果會有更好現象。


    This thesis reports our study on a novel weather forecast approach based on
    trend classification. This approach is to predict future temperature based on past
    temperature histories. Usually the daily temperature is modeled as an interval and
    hence, in our approach, both the upper bound and lower bound are considered for
    match/prediction. Since the amount of data considered is huge, the proposed approach
    can also be viewed as big data analysis. In our approach, trend classification is to
    provide a hierarchical clustering structure to make pattern match more meaningful so
    that temperature prediction based on those patterns can work. In the proposed trend
    classification, an overlapping idea is considered to cope with possible variances of
    temperatures in trend classification. After trend classification, a clustering approach is
    employed to define patterns for match. In this study, dramatic changes in temperatures
    are also considered and are treated as outliers in the pattern definition process to avoid
    pattern pollution. After the processing of data, the patterns are used to predict the
    temperatures in the future. From the experimental results, the average error for the
    upper bound temperature predicted for the following four days by the proposed
    approach is at least 0.5C smaller than that reported the news, and the average error of
    the lower bound temperature is at least 0.8C smaller than that in the news. In other
    words, the prediction only using past data without any meteorological information is
    compatible with and even better than the traditional prediction using meteorological
    information. Moreover, a simple data fusion technique by using Kalman filter is also
    considered to combine the predictions from our approach and from meteorological
    information. From the experiments, it can be evident that such an approach can indeed
    have much better prediction than those made by individual approaches.

    中文摘要........................................................................................................................ I Abstract ......................................................................................................................... II Figure list ...................................................................................................................... V Table list.................................................................................................................... VIII Acknowledgements......................................................................................................IX Chapter 1 Overview .......................................................................................................1 1.1 Motivation........................................................................................................1 1.2 Related work ....................................................................................................2 1.3 Research Objective ..........................................................................................6 1.4 Organization.....................................................................................................7 Chapter 2 Background Knowledge ................................................................................8 2.1 Neural network.................................................................................................8 2.1.1 Back-Propagation Neural Network...............................................................9 2.2 Correlation in cities..........................................................................................9 2.2.1 Linear regression.........................................................................................10 2.3 Delay Time.....................................................................................................12 2.3.1 Correlation coefficient ................................................................................12 2.3.2 Linear Interpolation Method .......................................................................13 2.3.3 Pearson correlation coefficient ...................................................................14 2.3.4 Discussions .................................................................................................15 2.4 Data pre-processing .......................................................................................16 2.4.1 Conception ..................................................................................................16 2.4.2 Data form and resolutions ...........................................................................17 2.4.3 Classification mode.....................................................................................17 2.4.3.1 Euclidean distance ...................................................................................18 2.4.3.2 Fuzzy c-means cluster..............................................................................19 2.4.4 Discussions .................................................................................................19 2.5 Remarks .........................................................................................................20 Chapter 3 Trend Classification.....................................................................................52 3.1 Concept ..........................................................................................................52 3.2 Methodology ..................................................................................................53 3.3 Data ................................................................................................................54 3.3.1 Interval data ................................................................................................55 3.3.2 Data form ....................................................................................................55 3.3.3 Input data ....................................................................................................56 3.3.4 Target Data ..................................................................................................56 IV 3.3.5 Resolution ...................................................................................................56 3.3.6 Severe situation ...........................................................................................57 3.3.7 Data shifts ...................................................................................................57 3.4 Trend ..............................................................................................................58 3.4.1 Three types of trend ....................................................................................58 3.4.2 Improved three types of trend .....................................................................58 3.4.3 Seven types of trend....................................................................................59 3.5 Classification..................................................................................................60 3.5.1 Trend Classification mode ..........................................................................60 3.6 Improved Trend Classification mode.............................................................61 3.7 Fuzzy c-mean .................................................................................................63 3.8 Euclidean distance .........................................................................................64 3.9 Remarks .........................................................................................................65 Chapter 4 Experimental results....................................................................................74 4.1 Forecast in each month ..................................................................................75 4.2 General case and ordinary case......................................................................79 4.3 Different resolutions ......................................................................................80 4.4 Remarks .........................................................................................................82 Chapter 5 Static state Kalman Filter ............................................................................91 5.1 General case ...................................................................................................91 5.2 Ordinary case .................................................................................................93 5.3 Combine ordinary and dramatic change case ................................................95 Chapter 6 Conclusions and Future Work ...................................................................106 6.1 Conclusions............................................................................................106 6.2 Future Work ...........................................................................................108 References.................................................................................................................. 110

    [1] H. Ong, C.-M. Wu, and H.-C. Kuo, “Hybrid Mass Flux Cumulus Schemes
    (HYMACSs) as a step to unified cumulus parameterization and its application
    to tropical cyclone intensity prediction,” in Proc. Weather AnalysisForecasting
    Conference, vol. A2, pp. 2-13, 2015
    [2] G.-D. Hwang, and J.-P. Chen, “A Two-Moment Cloud Microphysics
    Parameterization in the Global Model,” in Proc. of Weather
    AnalysisForecasting Conference, vol. P2, pp. 2-30, 2015.
    [3] Charney, J. G., and A. Eliassen, “On the growth of the hurricane depression,” in
    Proc. J. Atmos. Sci., vol. 21, pp. 68–75, Jan. 1964.
    [4] Arakawa, A., and C.-M. Wu, “A unified representation of deep moist
    convection in numerical modeling of the atmosphere,” in Proc. J.Atmos. Sci.,
    vol. 70, pp. 1977-1992, Jul. 2013.
    [5] A. Klein, R. S. Lee, and M. Robinson, “A refined model for identifying
    unavoidable portion of the impact of weather and other factors on airport
    operation,” in Proc. IEEE Digital Avionics Systems Conference, vol. 4B, pp. 1 -
    13, Oct. 2011.
    [6] Y. Wang, “Prediction of weather impacted airport capacity using RUC-2
    forecast,” in Proc. IEEE Digital Avionics Systems Conference, vol. 3C, pp. 1 -
    12, Oct. 2012.
    [7] J. E. Young, A. Crowell, and A. Fabian, “Modeling weather in simulation and
    analysis,” in Proc. Integrated Communications, Navigation and Surveillance
    Conference (ICNS), pp. 1 - 11, Apr. 2013.
    111
    [8] P. Louka, G. Galanis, N. Siebert, G. Kariniotakis, P. Katsafados, I. Pytharoulis,
    and K. G., “Improvements in wind speed forecasts for wind power prediction
    purposes using Kalman filtering,” in. Proc. Journal of Wind Engineering and
    Industrial Aerodynamics, vol. 96, no. 12, pp. 2348–2362, 2008.
    [9] Wang, Y., and Kulkarni, D., “Modeling Weather Impact on Ground Delay
    Programs,” in Proc. SAE Int. J. Aerosp., vol. 4, no. 2, p. 1207 - 1215, 2011.
    [10] Z. Huang, and Y. Liu, “Combined use of double weather radar in weather
    modification,” in Proc. International Conference on Information Science and
    Engineering (ISISE), pp. 326 – 330, Dec. 2010.
    [11] M. Zhua, Y. Pana, Z. Huangb, and P. Xua, “An alternative method to predict
    future weather data for building energy demand simulation under global climate
    change,” Energy and Buildings, vol. 113, pp. 74-86, Feb. 2016.
    [12] H. S. Badr, B. M. Elhadidi, and A. O. Sherif, “Evaluation of data assimilation
    on numerical weather prediction for Egypt,” in Proc. IEEE International on
    Geoscience and Remote Sensing Symposium (IGARSS), 2010, pp. 3526-3529.
    [13] M. Christensona, H. Manza, and D. Gyalistrasb, “Climate warming impact on
    degree-days and building energy demand in Switzerland,” Energy Conversion
    and Management, vol. 47, pp. 671-686, Apr. 2006.
    [14] Mark F. Jentsch, AbuBakr S. Bahaj, and Patrick A.B. James, “Climate change
    future proofing of buildings—Generation and assessment of building simulation
    weather files,” Energy and Buildings, vol. 40, pp. 2148-2168, Fun. 2008.
    [15] A. Budiansyah, and V. Mutiawani , “Building weather season pattern from aceh
    local news article (Text period analysis via significant term),” in Proc.
    International Conference on Information Technology Systems and Innovation
    (ICITSI), pp. 29-32, Nov. 2014
    112
    [16] L. D. Aponte-Bermúdez J. M. Morell, and E. Rodríguez, “CariCOOS:
    Improving high-resolution numerical weather prediction for the northeast
    caribbean region,” in Proc. IEEE Oceans, pp. 1-10, Oct. 2015.
    [17] J. D. Wang, “An external memory approach to computing the maximal repeats
    across classes of DNA sequences,” in Proc. Asian J. Health Inf. Sci., vol. 1, pp.
    276–295, 2006.
    [18] S. F. Su, C. C. Chuang, C. W. Tao, J. T. Jeng, and C. C. Hsiao, “Radial Basis
    Function Networks With Linear Interval Regression Weights for Symbolic
    Interval Data,” in Proc. IEEE Transactions on Systems, Man, and Cybernetics,
    Part B, vol. 42, pp. 69-80, Feb. 2012
    [19] C. C. Chuang, C. W. Li, C. C. Hsiao, S. F. Su, and Jin-Tsong Jeng, “Robust
    interval support vector interval regression networks for interval-valued data
    with outliers,” in Proc. 7th International Conference on Soft Computing and
    Intelligent Systems (SCIS) and 15th International Symposium on Advanced
    Intelligent Systems (ISIS), Dec. 2014.
    [20] M. A. O. Domingues, R. M. C. R. de Souza, and F. J. A. Cysneiros, “Arobust
    method for linear regression of symbolic interval data,” Pattern Recognit. Lett.,
    vol. 31, no. 13, pp. 1991–1996, Oct. 2010.
    [21] C. C. Chuang, “Extended support vector interval regression networks for
    interval input-output data,” Inf. Sci., vol. 178, no. 3, pp. 871–891, Feb. 2008
    [22] Francisco de A.T. de Carvalho, Renata M.C.R. de Souza, Marie Chavent and
    Yves Lechevallier, “Adaptive Hausdorff distances and dynamic clustering of
    symbolic interval data,” Pattern Recognition Letters, vol. 27, pp. 167-179,
    2006.
    113
    [23] Gang Xiang, Scott A. Starks, Vladik Kreinovich, and Luc Longpre, “New
    Algorithms for Statistical Analysis of Interval Data,” Proceedings of the
    Workshop on State-of-the-Art in Scientific Computing PARA'04, Denmark,
    2004.
    [24] D. D. Nguyena, L. T. Ngoa, L. T. Phama, and W. Pedryczb, “Towards hybrid
    clustering approach to data classification: Multiple kernels based
    interval-valued Fuzzy C-Means algorithms,” Fuzzy Sets and Systems, vol. 279,
    pp. 17-39, Nov. 2015.
    [25] L. Zhanga, W. Lua, X. Liua, W. Pedryczc, and C. Zhonga, “Fuzzy C-Means
    clustering of incomplete data based on probabilistic information granules of
    missing values,” Knowledge-Based Systems, vol. 99, pp. 51-70, May. 2016.
    [26] H. Izakiana, and W. Pedrycza, “Agreement-based fuzzy C-means for clustering
    data with blocks of features,” Neurocomputing, vol. 127, pp. 266-280, Mar.
    2014.
    [27] H. Tanaka, S. Vejima, and K. Asai, “Linear regression analysis with fuzzy
    model,” in Proc. IEEE Transactions on Systems, Man, and Cybernetics., vol. 12,
    no. 6, pp. 903–907, Nov. 1982.
    [28] B. B. Chaudhuri and A. Rosenfeld, ”A modified Hausdorff distance between
    fuzzy sets,” Information Sciences, vol. 118, pp. 159-171, 1999.

    QR CODE