簡易檢索 / 詳目顯示

研究生: 許世緯
Shih-Wei Hsu
論文名稱: 熱塑性彈性體化學結構影響聚醯胺熔融共混物之形狀記憶性質研究
Effect of the Chemical Structure on Shape Memory Behavior of Thermoplastic Polyurethane/Polyamide Blends
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 吳昌謀
Chang-Mou Wu
邱顯堂
Hsien-Tang Chiu
陳錦江
Jieng-Chiang Chen
陳榮宏
Rung-Hung Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 98
中文關鍵詞: 形狀記憶熔融紡絲聚醯胺聚氨酯聚脲
外文關鍵詞: Shape memory, Melting spinning, Polyamide, Polyurethane, Polyurea
相關次數: 點閱:369下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗研究聚醯胺-6(Polyamide-6, PA6)分別熔融共混熱塑性聚氨酯(Polyurethane, TPU)與熱塑性聚脲(Polyurea, PUA),並製備成薄膜探討其形狀記憶功效,熱塑性彈性體主要分為TPU與PUA兩大類,以化學結構來看,兩者最大差別在於PUA擁有較多的N-H鍵,且PUA與PA6極性相近,可產生較多與強的氫鍵作用力,使其兩相相容性佳,因此PA6與TPU或PUA熔融共混後會有不同兩相微結構、儲存模量以及交聯密度等特性,更進一步影響形狀記憶效能。
本研究發現在偏光光學顯微鏡下可觀察到PA6/PUA呈現共連續相的結構,特別在50 % PA6與50 % PUA(50PUA)的混摻比例下,擁有半互穿網絡結構(semi-IPN),有助於形狀記憶功效的提升;本研究也藉由溶脹實驗計算出交聯密度,將TPU與TPU兩系統比較後發現,PA6/PUA薄膜有較高的交聯密度,因PA6與PUA極性相近,相容性較高,兩相間能產生更多的物理交聯點,可於形狀記憶機制中做為固定相,有利於回復率的提升,最終比較發現PA6/PUA共混系統擁有較佳形狀記憶特性,其中50 PUA薄膜固定率為96.8 %,回復率則高達99.2 %。
本研究使用雙組份熔融紡絲機搭配核殼型紡嘴,生產出PA6/TPU及PA6/PUA核殼複合纖維,在熔融紡絲加工中,會給予纖維一定牽伸力,可促進分子鏈順相度,因此纖維型態的形狀記憶效能高於薄膜型態,PA6/TPU纖維經過熱延伸後加工後,固定率為78.8 %,而回復率高達99.9 %,另外,PA6/PUA核殼纖維的固定率為84.4 %,回復率為96.9 %,先前相關研究大多製備高分子形狀記憶薄膜,本研究成功生產成核殼型複合纖維,期望能增加形狀記憶材料應用領域。


Thermally responsive shape memory polymers have widely been applied in many fields. Polyamide 6 (PA6) was blended with various amount of thermoplastic polyurethane (TPU) or polyurea (PUA) via twin-screw extruder, and hot pressed into film to evaluate shape memory properties. The crosslinking density was analyzed by swelling experiments. Dynamic mechanical analysis (DMA) in tensile loading mode was used to determine the shape memory effect. Results of morphology were examined by polarized optical microscope (POM).
This study found that 1) the degree of crosslinking, 2) compatibility and 3) phase of the microstructure affect the shape memory. 1) The physical crosslinking can act as the fixing phase, while the soft segment of PU and the amorphous of PA6 can act as the reversible phase. Improving crosslinking density of the material can also effectively increase the recovery ratio 2) The polarity of PUA is similar to PA6, it make PUA have better compatible with PUA than TPU. Better compatibility helps to enhance the shape memory properties. 3) PA6 induce phase separation of PUA soft and hard segments, and PA6/PUA blends form IPN-like structure. Co-continuous phase can achieve better shape memory. After evaluating, the PA6/PUA film has optimal shape memory effect.
In this study, PA6/TPU and PA6/PUA core-shell fibers were produced by bicomponent melt spinning. In the melt spinning process, the fibers were given a drawing force, which could increase degree of molecular orientation. The shape memory effect of the fiber type is higher than that of the film type. After the PA6/TPU fiber is processed by thermal extension, the fixation ratio is 78.8 %, and the recovery ratio is 99.9%. In addition, The fixation ratio of the PA6/PUA core-shell fiber is 84.4%, and the recovery ratio was 96.9 %. Shape memory material were mostly prepared into film in previous studies. This study successfully produced core-shell fibers, and it is expected to increase the application of shape memory materials.

摘要 Abstract 第一章 前言 1.1 引言 1.2 形狀記憶材料簡介 1.3 研究動機 第二章 文獻回顧 2.1 形狀記憶之共混系統 2.1.1 溶液共混 2.1.2 熔融共混 2.2 熔融紡絲技術 2.2.1 熱塑性聚氨酯之熔融紡絲 2.2.2 雙組份熔融紡絲 第三章 實驗 3.1 材料 3.2 實驗流程 3.3 試片製備 3.3.1 PA6/TPU薄膜製備 3.3.2 PA6/PUA薄膜製備 3.3.3 PA6/TPU纖維製備 3.3.4 PA6/PUA纖維製備 3.4 實驗設備與測試儀器 3.4.1 實驗設備 3.4.2 檢測方法 第四章 結果與討論 4.1 官能基特性分析 4.2 熱性質分析 4.2.1 TPU熔融共混PA6對熔點及結晶溫度之影響 4.2.2 PUA熔融共混PA6對熔點及結晶溫度之影響 4.3 微結構分析 4.3.1 PA6/TPU薄膜 4.3.2 PA6/PUA薄膜 4.4 表面型態分析 4.5 動態黏彈性質分析 4.5.1 儲存模量之分析 4.5.2 Tanδ之分析 4.6 交聯密度分析 4.7 薄膜形狀記憶行為 4.8 纖維形狀記憶行為 4.8.1 PA6/TPU核殼複合纖維 4.8.2 PA6/PUA 核殼複合纖維 第五章 結論 參考文獻

[1] H. Chen, Y. Li, Y. Liu, T. Gong, L. Wang, S. Zhou, Highly pH-sensitive polyurethane exhibiting shape memory and drug release, Polymer Chemistry 5(17) (2014) 5168-5174.
[2] P. Du, X. Liu, Z. Zheng, X. Wang, T. Joncheray, Y. Zhang, Synthesis and characterization of linear self-healing polyurethane based on thermally reversible Diels-Alder reaction, RSC Advances 3(35) (2013) 15475-15482.
[3] R. Mohr, K. Kratz, T. Weigel, M. Lucka-Gabor, M. Moneke, A. Lendlein, Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers, Proceedings of the National Academy of Sciences of the United States of America 103(10) (2006) 3540-3545.
[4] L. Yu, Q. Wang, J. Sun, C. Li, C. Zou, Z. He, Z. Wang, L. Zhou, L. Zhang, H. Yang, Multi-shape-memory effects in a wavelength-selective multicomposite, Journal of Materials Chemistry A 3(26) (2015) 13953-13961.
[5] Q. Zhao, M. Behl, A. Lendlein, Shape-memory polymers with multiple transitions: complex actively moving polymers, Soft Matter 9(6) (2013) 1744-1755.
[6] K. Khoshroo, T.S. Jafarzadeh Kashi, F. Moztarzadeh, M. Tahriri, H.E. Jazayeri, L. Tayebi, Development of 3D PCL microsphere/TiO2 nanotube composite scaffolds for bone tissue engineering, Materials Science and Engineering: C 70 (2017) 586-598.
[7] L. Xin, L. Yanju, L. Haibao, W. Xiaohua, L. Jinsong, D. Shanyi, Fiber reinforced shape-memory polymer composite and its application in a deployable hinge, Smart Materials and Structures 18(2) (2009) 024002.
[8] J. Leng, X. Lan, Y. Liu, S. Du, Shape-memory polymers and their composites: Stimulus methods and applications, Progress in Materials Science 56(7) (2011) 1077-1135.
[9] Q. Ge, X. Luo, C.B. Iversen, P.T. Mather, M.L. Dunn, H.J. Qi, Mechanisms of triple-shape polymeric composites due to dual thermal transitions, Soft Matter 9(7) (2013) 2212-2223.
[10] W.M. Huang, B. Yang, L. An, C. Li, Y.S. Chan, Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism, Applied Physics Letters 86(11) (2005) 114105.
[11] Y. Wang, J. Li, X. Li, Y. Pan, Z. Zheng, X. Ding, Y. Peng, Relation between temperature memory effect and multiple-shape memory behaviors based on polymer networks, RSC Advances 4(39) (2014) 20364-20370.
[12] H. Wei, Y. Yao, Y. Liu, J. Leng, A dual-functional polymeric system combining shape memory with self-healing properties, Composites Part B: Engineering 83 (2015) 7-13.
[13] F.S. Senatov, K.V. Niaza, M.Y. Zadorozhnyy, A.V. Maksimkin, S.D. Kaloshkin, Y.Z. Estrin, Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds, Journal of the Mechanical Behavior of Biomedical Materials 57 (2016) 139-148.
[14] T. Ohki, Q.-Q. Ni, N. Ohsako, M. Iwamoto, Mechanical and shape memory behavior of composites with shape memory polymer, Composites Part A: Applied Science and Manufacturing 35(9) (2004) 1065-1073.
[15] Y. Zhang, Q. Wang, C. Wang, T. Wang, High-strain shape memory polymer networks crosslinked by SiO2, Journal of Materials Chemistry 21(25) (2011) 9073-9078.
[16] X. Feng, G. Zhang, B. Xu, H. Jiang, Q. Bai, H. Li, Self-healing elastomer assembly towards three-dimensional shape memory devices, RSC Advances 5(86) (2015) 70000-70004.
[17] S. Bin Hong, Y. San Ahn, J. Hyeok Jang, J.-G. Kim, N. Seo Goo, W.-R. Yu, Mechanical analysis of carbon fiber reinforced shape memory polymer composite for self-deployable structure in space environment, 2016.
[18] K.S. Lee, Y.W. Chang, Thermal, mechanical, and rheological properties of poly(ε‐caprolactone)/halloysite nanotube nanocomposites, Journal of Applied Polymer Science 128(5) (2012) 2807-2816.
[19] W. Li, Y. Liu, J. Leng, Shape memory polymer nanocomposite with multi-stimuli response and two-way reversible shape memory behavior, RSC Advances 4(106) (2014) 61847-61854.
[20] J. Zhou, W. Wang, S. Villarroya, K.J. Thurecht, S.M. Howdle, Epoxy functionalised poly(?-caprolactone): synthesis and application, Chemical Communications (44) (2008) 5806-5808.
[21] T. Mu, L. Liu, X. Lan, Y. Liu, J. Leng, Shape memory polymers for composites, Composites Science and Technology 160 (2018) 169-198.
[22] J. Karger-Kocsis, S. Kéki, Chapter 27 - Recent advances in shape memory epoxy resins and composites, Multifunctionality of Polymer Composites, William Andrew Publishing, Oxford, 2015, pp. 822-841.
[23] J. Karger-Kocsis, S. Keki, Biodegradable polyester-based shape memory polymers: Concepts of (supra)molecular architecturing, Express Polymer Letters 8(6) (2014) 397-412.
[24] H. Luo, Y. Liu, Z. Yu, S. Zhang, B. Li, Novel Biodegradable Shape Memory Material Based on Partial Inclusion Complex Formation between α-Cyclodextrin and Poly(ϵ-caprolactone), Biomacromolecules 9(10) (2008) 2573-2577.
[25] W. Liu, R. Zhang, M. Huang, X. Dong, W. Xu, N. Ray, J. Zhu, Design and structural study of a triple-shape memory PCL/PVC blend, Polymer 104 (2016) 115-122.
[26] L. Xia, J. Xian, J. Geng, Z. Xin, Z. Zhang, Facile fabrication of thermoplastic ternary copolymerized polyamide and maleated polyethylene shape memory blends, Polymer Testing 63 (2017) 505-510.
[27] F. Li, Y. Chen, W. Zhu, X. Zhang, M. Xu, Shape memory effect of polyethylene/nylon 6 graft copolymers, Polymer 39(26) (1998) 6929-6934.
[28] I. Navarro-Baena, V. Sessini, F. Dominici, L. Torre, J.M. Kenny, L. Peponi, Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior, Polymer Degradation and Stability 132 (2016) 97-108.
[29] W. Zhang, L. Chen, Y. Zhang, Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer, Polymer 50(5) (2009) 1311-1315.
[30] X. Jing, H.-Y. Mi, H.-X. Huang, L.-S. Turng, Shape memory thermoplastic polyurethane (TPU)/poly(ε-caprolactone) (PCL) blends as self-knotting sutures, Journal of the Mechanical Behavior of Biomedical Materials 64 (2016) 94-103.
[31] M. Raja, S.H. Ryu, A.M. Shanmugharaj, Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites, European Polymer Journal 49(11) (2013) 3492-3500.
[32] S.M. Lai, Y.C. Lan, Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends, Journal of Polymer Research 20(5) (2013) 140.
[33] S.K. Dogan, S. Boyacioglu, M. Kodal, O. Gokce, G. Ozkoc, Thermally induced shape memory behavior, enzymatic degradation and biocompatibility of PLA/TPU blends: “Effects of compatibilization”, Journal of the Mechanical Behavior of Biomedical Materials 71 (2017) 349-361.
[34] X. Qi, H. Xiu, Y. Wei, Y. Zhou, Y. Guo, R. Huang, H. Bai, Q. Fu, Enhanced shape memory property of polylactide/thermoplastic poly(ether)urethane composites via carbon black self-networking induced co-continuous structure, Composites Science and Technology 139 (2017) 8-16.
[35] B. Chu, T. Gao, Y. Li, J. Wang, C.R. Desper, C.A. Byrne, Microphase separation kinetics in segmented polyurethanes: effects of soft segment length and structure, Macromolecules 25(21) (1992) 5724-5729.
[36] Y. Li, Z. Ren, M. Zhao, H. Yang, B. Chu, Multiphase structure of segmented polyurethanes: effects of hard-segment flexibility, Macromolecules 26(4) (1993) 612-622.
[37] L.T.J. Korley, B.D. Pate, E.L. Thomas, P.T. Hammond, Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes, Polymer 47(9) (2006) 3073-3082.
[38] S. Lee Han, H. Ko Jung, S. Song Ki, H. Choi Kyung, Segmental and chain orientational behavior of spandex fibers, Journal of Polymer Science Part B: Polymer Physics 35(11) (1998) 1821-1832.
[39] S. Oprea, Effect of structure on the thermal stability of curable polyester urethane urea acrylates, Polymer Degradation and Stability 75(1) (2002) 9-15.
[40] T. Gupta, B. Adhikari, Thermal degradation and stability of HTPB-based polyurethane and polyurethaneureas, Thermochimica Acta 402(1) (2003) 169-181.
[41] G. Rabani, H. Luftmann, A. Kraft, Synthesis and properties of segmented copolymers containing short aramid hard segments and aliphatic polyester or polycarbonate soft segments, Polymer 46(1) (2005) 27-35.
[42] E. Cipriani, M. Zanetti, V. Brunella, L. Costa, P. Bracco, Thermoplastic polyurethanes with polycarbonate soft phase: Effect of thermal treatment on phase morphology, Polymer Degradation and Stability 97(9) (2012) 1794-1800.
[43] J. Kaursoin, K. Agrawal Ashwini, Melt spun thermoresponsive shape memory fibers based on polyurethanes: Effect of drawing and heat‐setting on fiber morphology and properties, Journal of Applied Polymer Science 103(4) (2006) 2172-2182.
[44] P. Radhakrishnan Nair, C.P. Reghunadhan Nair, D.J. Francis, Imide‐modified polyurethanes, syntheses, thermal, and mechanical characteristics, Journal of Applied Polymer Science 70(8) (1998) 1483-1491.
[45] Y.M. Song, W.C. Chen, T.L. Yu, K. Linliu, Y.H. Tseng, Effect of isocyanates on the crystallinity and thermal stability of polyurethanes, Journal of Applied Polymer Science 62(5) (1996) 827-834.
[46] H. Yeganeh, M.A. Shamekhi, Poly(urethane-imide-imide), a new generation of thermoplastic polyurethane elastomers with enhanced thermal stability, Polymer 45(2) (2004) 359-365.
[47] F. Qiu, D. Yang, G. Cao, R. Zhang, P. Li, Synthesis, characterization, thermal stability and thermo-optical properties of poly(urethane-imide), 2009.
[48] F.A. Reifler, R. Hufenus, M. Krehel, E. Zgraggen, R.M. Rossi, L.J. Scherer, Polymer optical fibers for textile applications – Bicomponent melt spinning from cyclic olefin polymer and structural characteristics revealed by wide angle X-ray diffraction, Polymer 55(22) (2014) 5695-5707.
[49] A. Genovese, R.A. Shanks, Simulation of the specific interactions between polyamide-6 and a thermoplastic polyurethane, Computational and Theoretical Polymer Science 11(1) (2001) 57-62.
[50] W.G. Hwang, K.H. Wei, C.M. Wu, Mechanical, thermal, and barrier properties of NBR/organosilicate nanocomposites, Polymer Engineering & Science 44(11) (2004) 2117-2124.
[51] K. Czifrák, J. Karger‐Kocsis, L. Daróczi, M. Zsuga, S. Kéki, Poly(ε‐caprolactone) and Pluronic Diol‐Containing Segmented Polyurethanes for Shape Memory Performance, Macromolecular Chemistry and Physics 215(19) (2014) 1896-1907.
[52] N. Chen, X. Yao, C. Zheng, Y. Tang, M. Ren, Y. Ren, M. Guo, S. Zhang, L.-Z. Liu, Study on the miscibility, crystallization and crystalline morphology of polyamide-6/polyvinylidene fluoride blends, Polymer 124 (2017) 30-40.
[53] H.B. Nejad, R.M. Baker, P.T. Mather, Preparation and characterization of triple shape memory composite foams, Soft Matter 10(40) (2014) 8066-8074.
[54] A.H. Torbati, H.B. Nejad, M. Ponce, J.P. Sutton, P.T. Mather, Properties of triple shape memory composites prepared via polymerization-induced phase separation, Soft Matter 10(17) (2014) 3112-3121.

無法下載圖示 全文公開日期 2023/08/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE