簡易檢索 / 詳目顯示

研究生: 林志龍
Chih-Lung Lin
論文名稱: 具石墨烯奈米片/多壁奈米碳管/聚吡咯混合填料之三維導電網絡高分子奈米複合材料應用於電磁屏蔽
Graphene Nanoplatelet/Multiwalled Carbon Nanotube/Polypyrrole Hybrid Fillers in Polymer Nanocomposites with 3D Conductive Networks for EMI Shielding
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱顯堂
Hsien-Tang Chiu
梁國全
Guo-Quan Liang
許耀基
Yao-chi Shu
孫茂誠
Maw-Cherng Suen
游進陽
Chin-Yang Yu
鄭智嘉
Chih-Chia Cheng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 71
中文關鍵詞: 溴化十六烷基三甲銨石墨烯奈米片/多壁奈米碳管/聚吡咯聚氨酯三維奈米結構電磁屏蔽
外文關鍵詞: CTAB, GNP/MWCNT/PPy, 3D nanostructure, PU, EMI SE
相關次數: 點閱:327下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是以添加陽離子界面活性劑溴化十六烷基三甲銨(Hexadecyltrimethylammonium bromide, CTAB),並以原位化學氧化聚合製備出石墨烯奈米片(Graphene nanoplatelet, GNP)/多壁奈米碳管(Multi-walled carbon nanotube, MWCNT)/聚吡咯(Polypyrrole, PPy)混合填料。接著以聚氨酯 (Polyurethane, PU)作為高分子基體混和製備GNP/MWCNT/PPy/PU奈米複合材料。藉由混和填料的協同作用來提升導電性能,以及GNP、MWCNT、PPy及PU之間的界面極化等,增強電磁屏蔽(Electromagnetic interference shielding effectiveness, EMI SE) 效能。我們找出製備具三維奈米結構GNP/MWCNT/PPy的最佳配比,成功製備出一維的MWCNT/PPy奈米線佈滿在二維GNP/ PPy的奈米層上。此外,相互連接形成GNP/MWCNT/PPy的三維奈米結構,在絕緣體聚氨酯中發展形成GNP-PPy-MWCNT-PPy-GNP的連續導電網絡結構的奈米複合材料。因此在30 MHz至1,800 MHz的頻率範圍測試獲得EMI SE為35~40dB,已可遮蔽掉99.9%以上的電磁波,具有商業化應用之潛力。


    This study reports the preparation of graphene nanoplatelet (GNP)/multiwalled carbon nanotube (MWCNT)/polypyrrole (PPy) hybrid fillers via in the chemical oxidative polymerization, with the addition of a cationic surfactant (hexadecyltrimethylammonium bromide, CTAB). These hybrid fillers were incorporated into polyurethane (PU) to prepare GNP/MWCNT/PPy/PU nanocomposites. The electrical conductivity of the nanocomposites was enhanced by the synergy of hybrid fillers to increase the efficacy of EMI SE. We found the optimal formulation for the preparation of GNP/MWCNT/PPy 3D nanostructures and utilized this to successfully prepare GNP/PPy nanolayers (2D) extensively covered by MWCNT/PPy nanowires (1D). Additionally, when GNP/MWCNT/PPy 3D nanostructures were incorporated into a PU matrix, these would form a nanocomposite of a continuous network of conductive PPy–CNT–PPy–MWCNT–GNP paths. The results show that the nanocomposites greatly enhances the reflectance and attenuation of electromagnetic waves and the obtained EMI SE can reach 35-40 dB between 30-1,800 MHz, which will shield over 99.9% of all electromagnetic waves. Therefore, this EMI shielding composite has excellent prospects for commercial use.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 3 第二章 文獻回顧 4 2.1 奈米導電材料 4 2.1.1 奈米碳管 4 2.1.2 石墨烯 5 2.1.3 本質性導電高分子聚吡咯 6 2.1.4 奈米複合材料 8 2.2電磁屏蔽 10 2.2.1 奈米碳材料應用電磁屏蔽 12 2.2.2 導電性高分子/碳材料應用電磁屏蔽 13 2.3 生物訊號分析 14 2.3.1 心電圖(Electrocardiogram, EKG/ECG) 16 2.3.2 肌電圖(Electromyography, EMG) 18 第三章、實驗方法 19 3.1實驗說明 19 3.2實驗材料 20 3.3實驗設備及分析儀器 21 3.4 合成導電混合填料 24 3.5 製備奈米複合材料 25 第四章、結果與討論 26 4.1混合填料的形態及結構樣貌 26 4.2混合填料的結構表徵及相互作用 33 4.3 混合填料的電導率 38 4.4 混合填料混合PU基體形成奈米複合材料形態及其電導率 40 4.5電磁屏蔽測試 42 4.6生物訊號感測 47 第五章、結論 49 參考文獻 50 附錄:學術成就 58

    1. Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991. 354, 56-58.
    2. Iijima, S.; Ichihashi, T. Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature 1993. 363, 603-605.
    3. Anshori, I.; Rizalputri, L. N.; Althof, R. R.; Surjadi, S. S.; Harimurti, S.; Gumilar, G.; Yuliarto, B.; Handayani, M. Functionalized Multi-Walled Carbon Nanotube/Silver Nanoparticle (F-MWCNT/ Agnp) Nanocomposites as Non-Enzymatic Electrochemical Biosensors for Dopamine Detection. Nanocomposites 2021, 7, 97-108.
    4. Khetib, Y.; Melaibari, A.; Alsulami, R. The Influence of Combined Turbulators on the Hydraulic-Thermal Performance and Exergy Efficiency of MWCNT-Cu/Water Nanofluid in a Parabolic Solar Collector: A Numerical Approach. Energy Res. 2021, 9, 716549.
    5. Annin, B. D.; Yu, A. B.; Mulyukov, R. R. Mechanical Properties, Stability, and Buckling of Graphene Sheets and Carbon Nanotubes (Review). J. Appl. Mech. Tech. Phys. 2020, 61, 834-846.
    6. Novoselov, K. S.; Jiang, D. Two-Dimensional Atomic Crystals, Rapid Prototyp J, 2005, 102, 10451-10453.
    7. Yu, H.; Zhang, B.; Bulin, C.; Li, R.; Xing, R. High-Efficient Synthesis of Graphene Oxide Based on Improved Hummers Method, Sci. Rep., 2016, 12, 36138-36143.
    8. Geim, A. K.; Novoselov, K. S. The Rise of Graphene, in Nanoscience and technology, Catal. Sci. Ser., 2010, 45, 11-19.
    9. Andreas Elschner, Stephan Kirchmeyer, Wilfried Lovenich, Udo Merker, Knud Reuter. PEDOT: Principles and Applications of an Intrinsically Conductive Polymer, CRC Press, 2010.
    10. MacDiarmid, A. G. Synthetic Metals: a Novel Role for Organic Polymers. Synth Met 2001, 125, 11-22.
    11. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977, 16, 578-580.
    12. Wang, Y.; Jing, X. Intrinsically Conducting Polymers for Electromagnetic Interference Shielding. Polym Adv Technol 2005, 16, 344-351.
    13. A. Angeli, L. Alessandri, Gazz. Chim. Ital. 1916, 46, 283.
    14. R. McNeill, R. Siudak, J. H. Wardlaw, and D. E. Weiss, Electronic Conduction in Polymers. Aust. J. Chem. 1963, 16, 1056-1075.
    15. Wu, T. M.; Lin, S. H. Synthesis, Characterization, and Electrical Properties of Polypyrrole/Multiwalled Carbon Nanotube Composites. J. Polym. Sci. A Polym. Chem. 2006, 44, 6449–6457.
    16. Gu, Z.; Li, C.; Wang, G.; Zhang, L.; Li, X.; Wang, W.; Jin, S. Synthesis and Characterization of Polypyrrole/Graphite Oxide Composite by In Situ Emulsion Polymerization. J Polym Sci B Polym Phys 2010, 48, 1329-1335.
    17. Dassan, E. G. B.; Rahman, A. A. A.; Abidin, M. S. Z.; Akil, H. M. Carbon Nanotube–Reinforced Polymer Composite for Electromagnetic Interference Application: A review. Nanotechnol. Rev. 2020, 9, 768-788.
    18. Wang, M.; Tang, X. H.; Cai, J. H.; Wu, H.; Shen, J. B.; Guo, S. Y. Fabrication, Mechanism and Prospective of Conductive Polymer Composites with Multiple Interfaces for Electromagnetic Interference Shielding: A Review. Carbon 2021, 177, 377–402.
    19. Bagotia, N.; Choudhary, V.; Sharma, D. K. Synergistic Effect of Graphene/Multiwalled Carbon Nanotube Hybrid Fillers on Mechanical, Electrical and EMI Shielding Properties of Polycarbonate/Ethylene Methyl Acrylate Nanocomposites. Compos. B. Eng. 2019, 159, 378–388.
    20. Gahlout, P.; Choudhary, V. EMI Shielding Response of Polypyrrole-MWCNT/Polyurethane Composites. Synth. Met. 2020, 266, 116414.
    21. Sameni, R.; Clifford, G. D. A Review of Fetal ECG Signal Processing; Issues and Promising Directions. The Open Pacing, Electrophysiology & Therapy Journal, 2010, 3, 4.
    22. Addison, P. S. Wavelet Transforms and The ECG: A Review. Physiological Measurement 2005, 26, R155.
    23. Madona, P.; Basti, R. I.; Zain, M. M. PQRST Wave Detection on ECG Signals. GAC SANIT 2021, 35, 364-369.
    24. Reaz, M. B. I.; Hussain, M. S.; Mohd-Yasin, F. Techniques of EMG Signal Analysis: Detection, Processing, Classification and Applications. Biological Procedures Online 2006. 8, 11-35.
    25. Ahsan, M. R.; Ibrahimy, M. I.; Khalifa, O. O. EMG Signal Classification for Human Computer Interaction: A Review. European Journal of Scientific Research 2009, 33, 480-501.
    26. Fahoum, A. S.; Fraihat, A. A. Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains. International Scholarly Research Notices, 2014, 2014.
    27. Zhang, K.; Kang, N.; Zhang, B.; Xie, R.; Zhu, J.; Zou, B.; Liu, Y.; Chen, Y.; Shi, W.; Zhang, W.; Huang, W.; Wu, J.; Huo, F. Skin Conformal and Antibacterial PPy-Leather Electrode for ECG Monitoring. Adv. Electron. Mater. 2020, 6, 2000259.
    28. You, L.; Shi, X.; Cheng, J.; Yang, J.; Xiong, C.; Ding, Z.; Zheng, Z.; Wang, S.; Wang, J. Flexible Porous Gelatin/Polypyrrole/Reduction Graphene Oxide Organohydrogel for Wearable Electronics. J. Colloid Interface Sci. 2022, 625, 197-209.
    29. Yu, D.; Dai, L. Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors. J. Phys. Chem. Lett. 2010, 1, 2, 467–470.
    30. Wang, S.; Zhou, Y.; Liu, Y.; Wang, L.; Gao, C. Enhanced Thermoelectric Properties of Polyaniline/Polypyrrole/Carbon Nanotube Ternary Composites by Treatment with a Secondary Dopant Using Ferric Chloride. J. Mater. Chem. C 2020, 8, 528–535.
    31. Zhang, Z.; Chen, G.; Wang, H.; Zhai, W. Enhanced Thermoelectric Property by the Construction of a Nanocomposite 3D Interconnected Architecture Consisting of Graphene Nanolayers Sandwiched by Polypyrrole Nanowires. J. Mater. Chem. C 2015, 3, 1649–1654.
    32. Mo, M.; Zhao, W.; Chen, Z.; Yu, Q.; Zeng, Z.; Wu, X.; Xue, Q. Excellent Tribological and Anti-Corrosion Performance of Polyurethane Composite Coatings Reinforced with Functionalized Graphene and Graphene Oxide Nanosheets. RSC Adv. 2015, 5, 56486–56497.
    33. Jia, P.; Zhu, Y.; Lu, J.; Wang, B.; Song, L.; Wang, B.; Hu, Y. Multifunctional Fireproof Electromagnetic Shielding Polyurethane Films with Thermal Management Performance. Chem. Eng. J. 2022, 439, 135673.
    34. Avadhanam, V.; Thanasamy, D.; Mathad, J. K.; Tumuki, P. Single Walled Carbon Nano Tube -Polyaniline Core-Shell/Polyurethane Polymer Composite for Electromagnetic Interference Shielding. Polym. Compos. 2018, 39, 4105–4114.
    35. Verma, M.; Chauhan, S. S.; Dhawan, S. K.; Choudhary, V. N. Graphene Nanoplatelets/Carbon Nanotubes/Polyurethane Composites as Efficient Shield Against Electromagnetic Polluting Radiations. Compos. B. Eng. 2017, 120, 118–127.
    36. Zhou, Y. K.; He, B. L.; Zhou, W. J.; Huang, J.; Li, X. H.; Wu, B.; Li, H. L. Electrochemical Capacitance of Well-Coated Single-Walled Carbon Nanotube with Polyaniline Composites, Electrochim. Acta 2004, 49, 257–262.
    37. Li, Y.; Liu, J.; Wang, S.; Zhang, L.; Shen, B. Self-Templating Graphene Network Composites by Flame Carbonization for Excellent Electromagnetic Interference Shielding. Compos. Part B: Eng. 2020, 182, 107615.
    38. Abdah, M. A. A. M.; Razali, N. S. M.; Lim, P. T.; Kulandaivalu, S.; Sulaiman, Y. One-Step Potentiostatic Electrodeposition of Polypyrrole/Graphene Oxide/ Multi-Walled Carbon Nanotubes Ternary Nanocomposite for Supercapacitor. Mater. Chem. Phys. 2018, 219, 120–128.
    39. PArmes, S. Optimum Reaction Conditions for the Polymerization of Pyrrole by Iron(III) Chloride in Aqueous Solution. Synth. Met. 1987, 20, 365–371.
    40. Lu, M.; Xie, R.; Liu, Z.; Zhao, Z.; Xu, H.; Mao, Z. Enhancement in Electrical Conductive Property of Polypyrrole-Coated Cotton Fabrics Using Cationic Surfactant. J. Appl. Polym. Sci. 2016, 133, 43601.
    41. Gupta, N. D.; Banerjee, D.; Das, N. S.; Chattopadhyay, K. K. Kinetics of Micelle Formation and heir Effect on the Optical and Structural Properties of Polypyrrole Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2011, 385, 55–62.
    42. Zhang, X.; Zhang, J.; Wang, R.; Zhu, T.; Liu, Z. Surfactant-Directed Polypyrrole/CNT Nanocables: Synthesis, Characterization, and Enhanced Electrical Properties. Chemphyschem 2004, 5, 998–1002.
    43. Xiao, Q.; Wang, P. H.; Ji, L. L. Tan, X. K.; Ouyang, L. L. Dispersion of Carbon Nanotubes in Aqueous Solution with Cationic Surfactant CTAB. J. Inorg. Mater. 2007, 22, 1122–1126.
    44. Ramesh, S.; Haldorai, Y.; Kim, H. S.; Kim, J. H. A nanocrystalline Co3O4 @Polypyrrole/MWCNT Hybrid Nanocomposite for High Performance Electrochemical Supercapacitors. RSC Adv. 2017, 7, 36833–36843.
    45. Wang, Y.; Yang, J.; Wang, L.; Du, K.; Yin, Q.; Yin, Q. Polypyrrole/Graphene/Polyaniline Ternary Nanocomposite with High Thermoelectric Power Factor. ACS Appl. Mater. Interfaces 2017, 9, 20124–20131.
    46. Zhang, Z.; Chen, G.; Wang, H.; Zhai, W. Enhanced Thermoelectric Property by the Construction of a Nanocomposite 3D Interconnected Architecture Consisting of Graphene Nanolayers Sandwiched by Polypyrrole Nanowires. J. Mater. Chem. C 2015, 3, 1649–1654.
    47. Baghdadi, N.; Zoromba, M. S.; Abdel-Aziz, M. H.; Al-Hossainy, A. F.; Bassyouni, M.; Salah. N. One-Dimensional Nanocomposites Based on Polypyrrole-Carbon Nanotubes and Their Thermoelectric Performance. Polymers 2021, 13, 278.
    48. Khamlich, S.; Barzegar, F.; Nuru, Z. Y.; Dangbegnon, J. K.; Bello, A.; Ngom, B. D.; Manyala, N.; Maaza, M. Polypyrrole/Graphene Nanocomposite: High Conductivity and Low Percolation Threshold. Synth. Met. 2014, 198, 101–106.
    49. Khamlich, S.; Barzegar, F.; Nuru, Z. Y.; Dangbegnon, J. K.; Bello, A.; Ngom, B. D.; Manyala, N.; Maaza, M. Polypyrrole/Graphene Nanocomposite: High Conductivity and Low Percolation Threshold. Synth. Met. 2014, 198, 101–106.
    50. Tran, X. T.; Park, S. S.; Song, S.; Haider, M. S.; Imran, S. M.; Hussain, M.; Kim, H. T. Electroconductive Performance of Polypyrrole/Reduced Graphene Oxide/Carbon Nanotube Composites Synthesized Via in Situ Oxidative Polymerization. J. Mater. Sci. 2019, 54, 3156–3173.
    51. Lina, W. D.; Chang, H. M.; Wu, R. J. Applied Novel Sensing Material Graphene/Polypyrrole for Humidity Sensor. Sens. Actuators B Chem. 2013, 181, 326–331.
    52. Kherroub, D. E.; Bouhadjar, L.; Boucherdoud, A. Synthesis and Characterization of Novel Conductive Copolymer Poly[(phenylazepane-2-one)-co-(pyrrole)] with Improved Solubility and Conductivity Properties. J. Mater. Sci. 2021, 56, 1827–1841.
    53. Dhibar, S.; Das, C. K. Silver Nanoparticles Decorated Polypyrrole/Graphene Nanocomposite: A Potential Candidate for Next-Generation Supercapacitor Electrode Material. J. Appl. Polym. Sci. 2017, 134, 44724.
    54. Fana, Y.; Liua, Y.; Cai, Q.; Liu, Y.; Zhang, J. Synthesis of CTAB-Intercalated Graphene/Polypyrrole Nanocomposites Via in Situ Oxidative Polymerization. Synth. Met. 2012, 162, 1815–1821.
    55. Song, W. L.; Cao, M.S.; Lu, M. M.; Bi, S.; Wang, C. Y.; Liu, J.; Yuan, J.; Fan, L. Z. Flexible Graphene/Polymer Composite Films in Sandwich Structures for Effective Electromagnetic Interference Shielding. Carbon 2014, 66, 67–76.
    56. Saheeda, P.; Jayaleksmi, S. Liquid/Liquid Interfacial Polymerization as an Effective Synthesis Approach for Polypyrrole/MWCNTs Nanocomposite with Impressive Nonlinear Optical Properties. Opt. Mater. 2020, 104, 109940.
    57. Soong, Y. C.; Li, J. W.; Chen, Y. F.; Chen, J. X.; Sanchez, W. A. L.; Tsai, W. Y.; Chou, T. Y.; Cheng, C. C.; Chiu, C. W. Polymer-Assisted Dispersion of Boron Nitride/Graphene in a Thermoplastic Polyurethane Hybrid for Cooled Smart Clothes. ACS Omega 2021, 6, 28779–28787.
    58. Shahapurkar, K.; Gelaw, M.; Tirth, V.; Soudagar, M. E. M; Shahapurkar, P.; Mujtaba, MA; Kiran MC; Ahmed G. M. S. Comprehensive Review on Polymer Composites as Electromagnetic Interference Shielding Materials. Polym. Polym. Compos. 2022, 30, 1–17.
    59. He, Z. Z.; Yu, X.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y.; Zhou, Z. W. Largely Enhanced Dielectric Properties of Poly(Vinylidene Fluoride) Composites Achieved by Adding Polypyrrole-Decorated Graphene Oxide. Compos. Part A Appl. Sci. Manuf. 2018, 104, 89–100.
    60. Hu, W.; Zhang, J.; Liu, B.; Zhang, C.; Zhao, Q.; Sun, Z.; Cao, H.; Zhu, G. Synergism Between Lignin, Functionalized Carbon Nanotubes and Fe3O4 Nanoparticles for Electromagnetic Shielding Effectiveness of Tough Lignin-Based Polyurethane. Compos. Commun. 2021, 24, 100616.
    61. Omana, L.; Chandran, A.; John, R. E.; Wilson, R.; George, K. C.; Unnikrishnan, N. V.; Varghese, S. S.; George, G.; Simon, S. M.; Paul, I. Recent Advances in Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review. ACS Omega 2022, 7, 25921–25947.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE