簡易檢索 / 詳目顯示

研究生: 葉名翔
Ming-Hsiang Yeh
論文名稱: 可調度數人工眼睛模型應用於菲涅爾微結構隱形眼鏡之分析研究
Development of an Adjustable Artificial Eye Model for Optical Testing of Fresnel Micro-structured Contact Lenses
指導教授: 陳炤彰
Chao-Chang A. Chen
口試委員: 張榮語
Rong-Yeu Chang
王雪明
Hsueh-Ming StevenWang
黃招財
Chao-Tsai Huang
吳昌謀
Chang-Mou Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 154
中文關鍵詞: 可調度數人工眼睛模型電活性聚合物微振動射出壓印成形菲涅爾微結構隱形眼鏡光學測試
外文關鍵詞: Adjustable Artificial Eye Model, Electroactive Polymers, Micro Vibratile Injection Embossing Molding, Mircrostructured Contact Lenses, Optical Testing
相關次數: 點閱:269下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在設計與製作可調度數人工眼睛模型,應用電活性聚合物於水晶體部位
    調節度數,驗證微結構隱形眼鏡之光學性能,研究方法為透過微振動射出壓印成形射
    出成形(Micro Vibratile Injection Embossing Molding, MV-IEM)製造菲涅爾微結構隱形
    眼鏡殼模與製備乾片與濕片,接著以嬌生遠視 800 度隱形眼鏡與近視 800 度隱形眼
    鏡驗證可調度數範圍,最後測試微結構隱形眼鏡矯正效果。微結構隱形眼鏡殼模由三
    因子兩水準 L8 直交表與灰關聯分析法,找出多重品質特性最佳化參數組合,結果得
    知,R2 為最佳組別,微結構複製率為 95.33 %、平均 Z 軸位移量為 12.35 μm、Rt 為
    15.47 μm。量測結果得知,人工眼睛模型水晶體部位最大變形量 122.873 μm,可調度
    數範圍為近視 800 度至遠視 800 度,透過調製轉換函數(Modulation Transfer Function,
    MTF)進行分析,使用 MTF50 值比較,結果顯示,測試遠視 800 度時之正視眼所得影
    像 MTF50 為 20.6 lp/mm,具有遠視 800 度之人工眼睛模型 MTF50 為 6.4 lp/mm,配
    戴完嬌生雙周拋之遠視 800 度隱形眼鏡 MTF50 提升至 18.1 lp/mm,矯正效果為 82.4
    %,測試近視 800 度時之正視眼所得影像 MTF50 為 22.1 lp/mm,具有近視 800 度之
    人工眼睛模型 MTF50 為 3.9 lp/mm,配戴完嬌生日拋近視 800 度隱形眼鏡 MTF50 提
    升至17.7 lp/mm,矯正效果為75.8 %,最後測試具有遠視525度之人工眼睛模型MTF50
    為 9.6 lp/mm,配戴完愛爾康日拋遠視 525 度之隱形眼鏡 MTF50 為 17.2 lp/mm,矯正
    效果為 70 %,而配戴微結構遠視 525 度隱形眼鏡後 MTF50 為 15.2 lp/mm,矯正效果
    為 50 %,由結果得知本研究所製作之微結構隱形眼鏡具有矯正效果且人工眼睛模型
    可應用於隱形眼鏡之光學測試。


    This study aims to design and fabricate an adjustable artificial eye model using
    electroactive polymer to adjust the diopter in the crystalline lens region. It validates the
    optical performance of micro-structured contact lens. The model is used to assess the range
    of adjustable diopters by testing Johnson & Johnson contact lens (CLs) for myopia and
    hyperopia of 8.0 D. Shell mold are fabricated using Micro Vibratile Injection Embossing
    Molding, and the optimal parameter combination of multiple quality characteristics is found
    out by the three-factor two-level L8 orthogonal array and Grey Relational Analysis (GRA).
    The results show that R2 is the optimal group, Groove Filling Ratio (GFR) is 95.33%, the
    average Z-axis displacement is 12.35 μm, and the Rt is 15.47 μm. The maximum deformation
    of the crystalline lens is 122.873 μm, and adjustable range is from -8.0D to +8.0D. The
    MTF50 value is used to compare the results, it shows that the MTF50 value of the image
    obtained from a normal eye at +8.0 D is 20.6 lp/mm, while the MTF50 value of the artificial
    eye model with +8.0 D is 6.4 lp/mm. After wearing +8.0 D CLs, the MTF50 value improves
    to 18.1 lp/mm, resulting in a corrective effect of 82.4%. For -8.0 D, the MTF50 value of the
    image obtained from a normal eye is 22.1 lp/mm, whereas the artificial eye model with -8.0
    D yields an MTF50 value of 3.9 lp/mm. After wearing -8.0 D CLs, the MTF50 value
    improves to 17.7 lp/mm, resulting in a corrective effect of 75.8%. Finally, for an artificial
    eye model with +5.25 D, the MTF50 value is 9.6 lp/mm, which improves to 17.2 lp/mm after
    wearing +5.25 D CLs, resulting in a corrective effect of 70%. Wearing micro-structured CLs
    yields an MTF50 value of 15.2 lp/mm, with a corrective effect of 50%. The results indicate
    that the artificial eye model can be applied to optical testing of CLs.

    目錄 摘要........................................................................................................................................I ABSTRACT ......................................................................................................................... II 致謝.....................................................................................................................................III 目錄...................................................................................................................................... V 圖目錄.................................................................................................................................IX 表目錄..............................................................................................................................XIV 符號表..............................................................................................................................XVI 第一章 導論....................................................................................................................... 1 1.1 研究背景................................................................................................................ 1 1.2 研究目的................................................................................................................ 3 1.3 論文架構................................................................................................................ 4 第二章 文獻回顧............................................................................................................... 6 2.1 隱形眼鏡................................................................................................................ 6 2.1.1 隱形眼鏡分類與材料................................................................................. 8 2.1.2 隱形眼鏡製程............................................................................................. 8 2.2 菲涅爾微結構隱形眼鏡...................................................................................... 10 2.3 本實驗室先前對隱形眼鏡相關研究.................................................................. 14 2.4 微振動式射出壓印成形製程.............................................................................. 17 2.4.1 射出成形製程模式................................................................................... 17 2.4.2 壓電致動器介紹....................................................................................... 18 2.4.3 微振動式射出壓印成形........................................................................... 19 2.5 人工眼睛模型相關文獻...................................................................................... 23 2.6 電活性聚合物相關文獻...................................................................................... 26 2.7 專利回顧.............................................................................................................. 30 VI 2.8 文獻回顧總結...................................................................................................... 34 第三章 可調度數人工眼睛模型製作............................................................................. 38 3.1 可調度數人工眼睛模型設計.............................................................................. 39 3.1.1 人類眼睛介紹........................................................................................... 39 3.1.2 可調度數人工眼睛模型結構設計........................................................... 40 3.1.3 水晶體部位設計....................................................................................... 44 3.1.4 度數控制機制........................................................................................... 44 3.2 實驗 A_可調度數人工眼睛模型製作 ................................................................ 45 3.3 光穿透率測試...................................................................................................... 51 3.4 甘油與矽油充填率.............................................................................................. 52 3.5 實驗 A_水晶體電壓測試與變形量量測 ............................................................ 54 3.6 實驗 A_結果與討論 ............................................................................................ 59 第四章 微結構隱形眼鏡之射出成形誤差分析............................................................. 60 4.1 實驗 B_菲涅爾微結構隱形眼鏡殼模模流分析 ................................................ 61 4.1.1 模流分析網格........................................................................................... 61 4.1.2 模流分析參數設定................................................................................... 64 4.1.3 模流分析結果........................................................................................... 65 4.2 實驗 B_模具與實驗設備 .................................................................................... 72 4.2.1 模具設計................................................................................................... 72 4.2.2 射出成形設備與耗材............................................................................... 74 4.2.3 MV-IEM 製程模組 .................................................................................... 76 4.2.4 量測設備................................................................................................... 81 4.3 實驗 B_微結構隱形眼鏡殼模射出成形實驗 .................................................... 82 4.3.1 成形視窗與短射實驗............................................................................... 82 4.3.2 射出成形實驗........................................................................................... 84 4.4 實驗 B_微結構隱形眼鏡殼模結果分析 ........................................................... 86 VII 4.4.1 前弧殼模量測方法................................................................................... 86 4.4.2 量測結果分析........................................................................................... 91 4.5 實驗 B_結果與討論 ............................................................................................ 96 第五章 人工眼睛與微結構隱形眼鏡之影像驗證......................................................... 97 5.1 實驗 C_製備微結構隱形眼鏡乾片與濕片 ....................................................... 98 5.1.1 隱形眼鏡耗材及設備............................................................................... 98 5.1.2 隱形眼鏡乾片與濕片製備....................................................................... 99 5.2 實驗 C_微結構隱形眼鏡乾片與濕片量測 ..................................................... 102 5.3 實驗 C_人工眼睛模型可調度數範圍驗證 ..................................................... 104 5.3.1 樹莓派相機模組..................................................................................... 104 5.3.2 人工眼睛模型可調度數範圍與影像解析度......................................... 105 5.4 實驗 C_微結構隱形眼鏡之光學驗證 ............................................................. 108 5.5 實驗 C_調製轉換函數(MTF)............................................................................ 109 5.6 實驗 C_結果與討論 .......................................................................................... 112 5.7 綜合討論............................................................................................................ 113 第六章 結論與建議....................................................................................................... 115 6.1 結論.................................................................................................................... 115 6.2 建議.................................................................................................................... 116 參考文獻......................................................................................................................... 117 附錄 A 3M VHB 4910..................................................................................................... 121 附錄 B XP POWER G50................................................................................................. 122 附錄 C 模具設計 ........................................................................................................... 123 附錄 D Sodick GL30 射出成形機................................................................................. 124 附錄 E PP6331 ................................................................................................................ 125 附錄 F 壓力感測器........................................................................................................ 127 附錄 G 溫度感測器 ....................................................................................................... 128 VIII 附錄 H 壓電致動器 PSt150/20/40 ................................................................................ 129 附錄 I HEMA.................................................................................................................. 130 附錄 J Raspberry Pi 4 Model B....................................................................................... 131 附錄 K Raspberry Pi HQ Camera ................................................................................... 132

    [1] Moreddu, R., Vigolo, D., & Yetisen, A. K. "Contact lens technology: from fundamentals
    to applications." Advanced healthcare materials, 2019, 8.15: 1900368., doi:
    https://doi.org/10.1002/adhm.201900368.
    [2] Lien, V. T., "NURBS 多焦隱形眼鏡設計及殼模射出成形之收縮分析研究," 博 士,
    機械工程系, 國立臺灣科技大學, 台北市, 2018.
    [3] Corbett, M., Maycock, N., Rosen, E., O'Brart, D., Corbett, M., Maycock, N., & O’Brart,
    D. "Contact Lens Practice."Corneal Topography: Principles and Applications, 2019,
    103-121.
    [4] Balasaheb, K. V., "菲涅爾隱形眼鏡設計與殼模射出成形之體積收縮 分析研究,"
    碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2020.
    [5] 侯建宇,"閉迴路微壓電致動系統之射出壓印製程應用於結構光學元件成形研究
    ",碩士論文,機械工程系,國立臺灣科技大學,台北市, 2017。
    [6] Young, G., "Chapter 8 - Soft Lens Design and Fitting," in Contact Lens Practice (Fourth
    Edition), N. Efron Ed. New Delhi: Elsevier, 2024, pp. 90-99.e1.
    [7] Stapleton, F., & Tan, J. "Impact of contact lens material, design, and fitting on
    discomfort. "Eye & Contact Lens: Science & Clinical Practice, 2017, 43.1: 32-39. doi:
    https://doi.org/10.1097/ICL.0000000000000318.
    [8] Greenslade Jr, T. B. "Fresnel's lighthouse lenses. "The Physics Teacher, 2007, 45.9:
    550-551.
    [9] Chen, C. C., & Chang, S. W. "Shrinkage Analysis on Convex Shellby Injection
    Molding. "International Polymer Processing, 2008, 23.1: 65-71.
    [10] 邱鈺婷, "非球面軟式隱形眼鏡之殼模射出成形研究," 碩士, 機械工程系, 國立
    臺灣科技大學, 台北市, 2016。
    [11] 魏俊安, "卷積神經網路應用於含菲涅爾微結構隱形眼鏡之射出成形殼模形狀誤差及微結構複製率分析研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2021。
    [12] 賴昶順,"含微結構之非軸對稱非球面反射式光學元件射出成形分析研究",碩士
    論文,機械工程系,國立臺灣科技大學,台北市,2016。
    [13] 王立紘,"微振動式射出壓印成形於離軸非球面光柵元件之成形誤差分析研究",
    碩士論文,機械工程系,國立臺灣科技大學,台北市,2019。
    [14] 王志豪,"振動式射壓於複合式光學元件射出成形之研究",碩士論文,機械工程
    系,國立臺灣科技大學,台北市,2010。
    [15] 游承凡,"微型光柵光學元件製造之射出成形研究",碩士論文,機械 工程系,
    國立臺灣科技大學,台北市,2015。
    [16] Jahn, C. E., Jahn, M. A., Kreiner, C. F., Serester, A., Fromberg, I., Jacobi, S., &
    Kamppeter, B. A. "Intraocular lens with reversibly adjustable optical power: pilot study
    of concept and safety. " Journal of Cataract & Refractive Surgery, 2003, 29.9: 1795-
    1799. doi: https://doi.org/10.1016/S0886-3350(03)00068-3.
    [17] Matthews, M. W., Eggleston, H. C., & Hilmas, G. E. "Development of a repeatedly
    adjustable intraocular lens. " Journal of Cataract & Refractive Surgery, 2003, 29.11:
    2204-2210.
    [18] Kohnen, T., & Suryakumar, R. "Extended depth-of-focus technology in intraocular
    lenses. " Journal of Cataract & Refractive Surgery, 2020, 46.2: 298-304. doi:
    https://doi.org/10.1097/j.jcrs.0000000000000109.
    [19] 楊筑渝,"人工眼睛模型設計製作與菲涅爾微結構隱形眼鏡之光學測試研究",碩
    士論文,機械工程系,國立臺灣科技大學,台北市,2022。
    [20] Bar-Cohen, Y. "Electroactive polymers as artificial muscles: a review. "Journal of
    Spacecraft and Rockets, 2002, 39.6: 822-827. doi: https://doi.org/10.2514/2.3902.
    [21] O’Halloran, A., O’malley, F., & McHugh, P. "A review on dielectric elastomer actuators, technology, applications, and challenges. "Journal of Applied Physics, 2008, 104.7. doi: https://doi.org/10.1063/1.2981642.
    [22] Madden, J. D., Vandesteeg, N. A., Anquetil, P. A., Madden, P. G., Takshi, A., Pytel, R.
    Z.,& Hunter, I. W. "Artificial muscle technology: physical principles and naval
    prospects. "IEEE Journal of oceanic engineering, 2004, 29.3: 706-728. doi:
    https://doi.org/10.1109/JOE.2004.833135
    [23] 韓志翔,"光學薄件的成形方法",中華民國專利,公開號 201107805A1,2011。
    [24] 陳炤彰,陳建志,陳宏昱,” 微奈米結構反向模造成型法及裝置” 中華民國專利,
    公開號 201321298 A,2013。
    [25] Chen, C. C., Lee, F. C., Wang, K. L.,& Yeh, C. H., "IN-MOLD VIBRATILE
    INJECTION COMPRESSION MOLDING METHOD AND MOLDING
    APPARATUS THEREOF," U. S. Pat., 20150336316A1, 2015.
    [26] 陳炤彰,游承凡,賴昶順,侯建宇,"具有微結構之光學元件的製造方法",中華
    民國專利,公開號 201825382A,2018。
    [27] Ansari, M. W., Nadeem, A., Ansari, M. W., & Nadeem, A. "The Eyeball: Some Basic
    Concepts. " Atlas of Ocular Anatomy, 2016, 11-27., doi: https://doi.org/10.1007/978-3-
    319-42781-2_2.
    [28] Forrester, J. V., Dick, A. D., McMenamin, P. G., Roberts, F., & Pearlman, E. "The eye
    e-book: basic sciences in practice. " Elsevier Health Sciences, 2020.
    [29] Uhlhorn, S. R., Borja, D., Manns, F., & Parel, J. M. "Refractive index measurement of
    the isolated crystalline lens using optical coherence tomography. " Vision research,
    2008, 48.27: 2732-2738. doi: https://doi.org/10.1016/j.visres.2008.09.010.
    [30] Donati, S., Caprani, S. M., Airaghi, G., Vinciguerra, R., Bartalena, L., Testa, F., &
    Azzolini, C. "Vitreous substitutes: the present and the future. "BioMed research
    international, 2014. doi: https://doi.org/10.1155/2014/351804.
    [31] Su, X., Tan, M. J., Li, Z., Wong, M., Rajamani, L., Lingam, G., & Loh, X. J. "Recent
    progress in using biomaterials as vitreous substitutes. "Biomacromolecules, 2015,
    16.10: 3093-3102. doi: https://doi.org/10.1021/acs.biomac.5b01091.
    [32] Hoyt, L. F. "New table of the refractive index of pure glycerol at 20 C. " Industrial &
    Engineering Chemistry, 1934, 26.3: 329-332.
    [33] B 270 GLASS. SCHOTT. https://abrisatechnologies.com/glass-materials/schott-b-270/
    [34] Smith, R. C., Smith, G. T., & Wong, D. "Refractive changes in silicone filled eyes. "
    Eye, 1990, 4.1: 230-234.
    [35] Gregory, S. R. "Physical properties of glycerine. " In: Glycerine. CRC Press, 2018. p.
    113-156.
    [36] Asmare, A., Al-Sabur, R., & Messele, E. "Experimental investigation of friction stir
    welding on 6061-t6 aluminum alloy using taguchi-based gra. " Metals, 2020, 10.11:
    1480.
    [37] Sefene, E. M., & Tsegaw, A. A. "Temperature-based optimization of friction stir
    welding of AA 6061 using GRA synchronous with Taguchi method. " The International
    Journal of Advanced Manufacturing Technology, 2022, 1-12.
    [38] Yeh, G. T., Wu, T. W., Tsai, S. W., Hsu, S. H., & Chiou, J. C. "Toward a wireless contact
    lens sensor system with a micro-capacitor for intraocular pressure monitoring on invitro porcine eye. " In: 2015 IEEE SENSORS. IEEE, 2015. p. 1-4

    無法下載圖示 全文公開日期 2026/08/14 (校內網路)
    全文公開日期 2026/08/14 (校外網路)
    全文公開日期 2026/08/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE