簡易檢索 / 詳目顯示

研究生: 林思豪
Ssu-Hao Lin
論文名稱: 3D列印連續碳纖維複合材料之線材製備系統改良與列印測試
Improvement on the filament preparation system and printing tests for continuous carbon fiber-reinforced composite 3D printing
指導教授: 鄭逸琳
Yi-Lin Cheng
口試委員: 郭俊良
Chun-Liang Kuo
羅光閔
Kuang-Min Lo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 108
中文關鍵詞: 複合材料連續碳纖維線材製備整平列印
外文關鍵詞: composite materials, continuous carbon fiber, continuous carbon fiber, flattening printing
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前3D列印連續碳纖維熱固型複合材料的應用尚未普及,因此本實驗室開發雙固型環氧樹脂搭配連續纖維進行列印的製程,並分為連續碳纖維線材製備系統與連續纖維列印模組,而在製備系統方面雖可製備線材但還無法連續製備成捲,並且製備過程中由於樹脂的高黏度很容易造成塑型孔的阻塞或使纖維斷裂,本研究主要以改善線材製備系統所遭遇的問題,讓樹脂和纖維有更好的結合並將線材製備成捲,最後透過列印整平模組列印線材並有良好的堆疊。
    本研究透過加熱樹脂槽與塑形孔解決製備過程線材容易斷裂與塑形孔阻塞的問題,使用孔型刮板來改善人工塗佈樹脂的方式,除去線材多餘樹脂並回流於樹脂槽,讓線材可以製備成捲,搭配連續纖維線材列印模組與整平刮板模組,修整單根斷面形狀找出較好堆疊的列印參數,由實驗結果得到製備線材纖維比例由原本的52.49%上升到了 67.07%,孔隙率的部分從7.09%減至3.61%整體下降了49%,標準差也從2.05%減至1.10%,而在列印的部分,透過整平列印讓線材斷面有較平整的矩形,在單根線材尺寸寬度與厚度的標準差,比未整平的線材分別下降了60%與45%。


    At present, the application of continuous carbon fiber thermosetting composite materials in 3D printing are not yet widely implemented. Therefore, our laboratory has developed a printing process that involves the combination of dual-cure epoxy resin and continuous fiber, which is divided into a continuous carbon fiber filament preparation system, and a continuous fiber 3D printing module. For the preparation system, although the filaments can be prepared, it cannot be continuously prepared into rolls. Moreover, the high viscosity of the resin can easily block the molding nozzle or even break fibers during the preparation process. This research mainly aims to improve the problems encountered by the filament preparation system, to support better combination of the resin and fiber, and then the preparation of filament into rolls, as well as leveling of the module filaments through 3D printing and ensure good stacking.
    By heating the resin tank and the molding nozzle, the research solves the problem of easy breakage in filaments and blockage of the molding nozzle during the preparation process. A hole-shaped scraper is used to improve the manual application method of resin, removing excess resin from the filament and reflow it back into the resin tank, so that the filament can be prepared into rolls. With the continuous fiber filament printing module and the leveling scraper module, the single cross-section can be trimmed to find out the printing parameters for better stacking. According to the experimental results, the proportion of prepared filament fibers has increased from 55.58% to 69.33%, the porosity has been reduced from 7.46% to 3.87%, overall decrease is 48%, with standard deviation reduced from 2.03% to 1.09%. As for printing, a leveled rectangle is produced for the cross-section of the filament through flattening printing. The standard deviation for the width and thickness of a single filament is 60% and 45% lower than that of the unleveled filament, respectively.

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景 1.2 研究動機與目的 1.3 研究方法 1.4 論文架構 第二章 文獻探討 2.1 纖維複合材料技術[9] 2.2 複合材料3D列印 2.2.1 熱塑型短纖維複合材料 2.2.2 熱固型短纖維複合材料 2.2.3 熱塑型連續纖維複合材料 2.2.4 熱固型連續纖維複合材料 2.2.5 市售複合材料列印機種使用線材 2.3 本實驗室連續纖維列印系統開發 第三章 使用材料及實驗設備 3.1 基材-環氧基雙固化樹脂 3.1.1 寡聚物-1701環氧丙烯酸酯 3.1.2 聚乙二醇二丙烯酸脂PEG600DA 3.1.3 TPO-光起始劑 3.2 增強材-連續碳纖維 3.3 實驗儀器 3.3.1 黏度計 3.3.2 TGA熱重分析儀 3.3.3 分析天平 3.4 連續纖維列印設備 3.4.1 UV光固化模組設備 3.4.2 列印控制器 3.4.3 後固化設備 第四章 連續纖維線材製備系統改良與結果 4.1 改良前製備系統設計與問題 4.1.1 樹脂黏度太高 4.1.2 塑型孔樹脂量較多 4.1.3 UV光造成無法捲線 4.2 改良第一版製備系統設計 4.2.1 樹脂槽加熱模組 4.2.2 塑形孔加熱治具 4.2.3 塑型模具尺寸 4.2.4 捲線離型紙 4.3 改良第二版製備系統設計 4.3.1 樹脂槽設計改良 4.3.2 孔型刮板 4.3.3 製備系統比較 4.4 製備系統改良後試驗 4.4.1 樹脂黏度試驗 4.4.2 加熱對抽線速度的影響 4.4.3 製備線材尺寸試驗 4.4.4 線材孔隙率試驗 4.4.5 樹脂與纖維混合穩定性 4.4.6 製備系統結論 第五章 複合材料3D列印測試與精度試驗 5.1 連續纖維列印模組設計概念 5.2 列印平台水平度校正 5.3 線材斷面塑型蓋 5.4 列印孔徑大小 5.5 列印曝光時間 5.6 刮板整平模組 5.6.1 整平模組設計 5.6.2 整平力道 5.6.3 刮板前端材質與設計 5.7 整平前後列印精度 5.8 堆疊列印參數試驗 第六章 結論與未來研究方向 6.1 結論 6.2 未來研究方向 參考文獻

    [1]P. Calvert, T.L. Lin, H. Martin (1997). “Extrusion freeform fabrication of chopped-fibre reinforced composites” High Perform. Polym., 9(4):449-456
    [2]F. Klift, Y. Koga, A. Todoroki, M. Ueda, Y. Hirano, R. Matsuzaki (2016). “3D Printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens” Open Journal of Composite Materials 6:18-27
    [3]Markforged, https://markforged.com/
    [4]Moi Composites, https://www.moi.am/
    [5]Continuous Composites, https://www.continuouscomposites.com/
    [6]M. Invernizzi, G. Natale, M. Levi, S. Turri, G. Griffini (2016). “UV-assisted 3D Printing of glass and carbon fiber-reinforced dual-cure polymer composites” Materials, 9(7):583
    [7]陳亮瑜 (2019) 3D列印複合材料之連續碳纖維線材製備系統開發
    [8]劉承樺 (2019) 連續纖維複合材料3D列印之研究
    [9]葉孟考,黃婉萱,宋棋舜,呂俊麟,2019年,“複合材料力學近況簡介”,國立清華大學。
    [10]ISO/ASTM (2016).“Terminology for Additive manufacturing - General principles – Terminology” ASTM, International 10.1520/ISOASTM52900-15
    [11]T. Campbell, C. Williams, O. Ivanova, B. Garrett (2011). “Could 3D Printing change the world?” Atlantic council, Washington
    [12]W. Zhong, F. Li, Z. Zhang, L. Song, Z. Li (2001). “Short fiber reinforced composites for fused deposition modeling” Materials science and engineering: A 301(2):125-13
    [13]N-G. Karsli, A. Aytac (2013). “Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites” Volume (51) 270-275
    [14]F. Ning, W. Cong, J. Wei, S. Wang (2015). “Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling” Composites Part B: Engineering Volume 80:369-378
    [15]R-T-L. Ferreira, L-C. Amatte, T-A. Dutra, D. Burger (2017). “Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers” Composites Part B: Engineering Volume 124(1):88-100
    [16]B-G. Compton, J-A. Lewis (2014) “3D-printing of lightweight cellular composites” Advanced materials volume 26(34):5930-5935
    [17]N. Nawafleh, E. Celik (2020). “Additive manufacturing of short fiber reinforced thermoset composites with unprecedented mechanical performance” Additive manufacturing volume 33:101109
    [18]N-S. Hmeidat, D-S. Elkins, H-R. Peter, V. Kumar, B-G. Compton (2021) “Processing and mechanical characterization of short carbon fiber-reinforced epoxy composites for material extrusion additive manufacturing” Composites Part B: Engineering Volume 223:109122
    [19]N-S. Hmeidat, J-W. Kemp, B-G. Compton (2018). “High-strength epoxy nanocomposites for 3D printing” Composites Science and Technology Volume 160(26):9-20
    [20]Arevolabs, https://arevo.com/
    [21]Anisoprint, https://anisoprint.com/
    [22]Impossible Objects, https://www.impossible-objects.com/
    [23]K. Sugiyama, R. Matsuzaki, M. Ueda, A. Todoroki, Y. Hirano(2018). “3D printing of composite sandwich structures using continuous carbon fiber and fiber tension’’ Composites Part A: Applied Science and Manufacturing Volume 113
    [24]H. Mei, Z. Ali, Y. Yan, I. Ali, L. Cheng (2019). “ Influence of mixed isotropic fiber angles and hot press on the mechanical properties of 3D printed composites’’ Additive Manufacturing Volume 27:150-158
    [25]W. Ye, G. Lin, W. Wu, P.Geng, X. Hu, Z. Gao, J. Zhao(2019). “Separated 3D printing of continuous carbon fiber reinforced thermoplastic polyimide’’ Volume 121:457-464
    [26]N. Li, Y. Li, S. Liu, (2016). “Rapid prototyping of continuous carbon fiber reinforced Polylactic acid composites by 3D printing.” Journal of Materials Processing Technology 238:2182251
    [27]R. Matsuzaki、T. Nakamura、K. Sugiyama、Y. Yamagata、M. Ueda、 A. Todoroki、Y. Hirano (2018). “Effects of set curvature and fiber bundle size on the printed radius of curvature by a continuous carbon fiber composite 3D Printer’’ Additive Manufacturing Volume 24:93-102
    [28]M. Invernizzi、G. Natale、M. Levi、S. Turri、G. Griffini(2018). “UV-Assisted 3D Printing of glass and carbon fiber-reinforced dual-cure Polymer Composites’’ Materials (Basel)9(7):583
    [29]W. Hao, Y. Liu, H. Zhou, H. Chen, D. Fang (2018). “Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites’’ Polymer Testing Volume 65:29-34
    [30]Y. Ming, S. Zhang, W. Han, B. Wang, Y. Duan, H. Xiao (2020). “Investigation on process parameters of 3D printed continuous carbon fiber-reinforced thermosetting epoxy composites” Additive Manufacturing Volume 33:101184
    [31]A. Thakur, X. Dong (2020). “Printing with 3D continuous carbon fiber multifunctional composites via UV-assisted coextrusion deposition” Manufacturing Letters Volume 24:1-5
    [32]X. He, Y. Ding, Z Lei, S Welch, W. Zhang, M. Dunn, Kai Yu, (2021). “3D printing of continuous fiber-reinforced thermoset composites” Additive Manufacturing Volume 40:101921
    [33]雙鍵化工股份有限公司, https://www.dbc.com.tw/tw/products_detal.
    php?id=688&pid=106&sid=124
    [34]雙鍵化工股份有限公司, https://www.dbc.com.tw/tw/products_detal
    .php?id=637&pid=106&sid=123
    [35]恆橋產業, https://www.chembridge.com.tw/product3.aspx?dsn=1897
    &csn=1233
    [36]台灣塑膠工業股份有限公司, http://www.fpc.com.tw/fpcw/index.ph
    p?op=proL&f=1&s=17
    [37]鄭正元,江卓培,林宗翰,林榮信,蘇威年,汪家昌,蔡明忠,賴維祥,鄭逸琳,洪基彬,2017年,“3D列印積層製造技術與應用”全華圖書出版社。
    [38]博士達科技股份有限公司, http://www.bosstar.com/zh-tw/product-522676/UVLED點光源固化機.html
    [39]新代科技股份有限公司, https://www.syntecclub.com/series.aspx?C
    ategoryID=MillingController&SubCategoryID=EngravingMachine&SeriesID=B1_1

    無法下載圖示 全文公開日期 2024/10/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE