研究生: |
蕭閔中 Min-Chung Hsiao |
---|---|
論文名稱: |
基於 Hilbert 曲線掃描順序排序的彩度抽樣點雲屬性壓縮 Sorted Hilbert Curve Scan Order-based Chroma Downsampling for Point Cloud Attribute Compression |
指導教授: |
鍾國亮
Kuo-Liang Chung |
口試委員: |
鍾國亮
Kuo-Liang Chung 蔡文祥 Wen-Hsiang Tsai 貝蘇章 Soo-Chang Pei 李同益 Tong-Yee Lee 鄧惟中 Wei-Chung Teng |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 資訊工程系 Department of Computer Science and Information Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 26 |
中文關鍵詞: | 點雲 、點雲壓縮 、彩度抽樣 、雙邊插植 、質心 、Hilbert曲線 、最近鄰 、排序 |
外文關鍵詞: | point cloud, G-PCC, attribute compression, chroma downsample, centroid, Hilbert curve, nearest neighbor, sorting |
相關次數: | 點閱:491 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的內容是一個以多邊形 (PLY) 檔案格式呈現的三維點雲,其中每個點由一組不規則的三維座標和 RGB 全彩屬性組成。在對點雲進行壓縮之前,每個點的 RGB 全彩屬性首先轉換為 YUV 屬性。本文提出了一種基於 Hilbert 曲線掃描順序的排序方法,以遞增的 Hilbert 曲線掃描順序重新排序點雲的不規則 3D 座標和相關的色彩屬性,使得重新排序後的鄰近點之間的空間距離可以減小。接下來,基於抽樣率 $\frac{1}{k}$,將排序後的 Hilbert 曲線掃描順序的點分成 $\lceil\frac{n}{k}\rceil$ 個區塊,其中 $n$ 表示點雲的點數。進一步計算每個區塊中 $k$ 個點的質心,並以區塊中最接近質心的點作為該區塊的抽樣點。最後,將排序後的 Hilbert 曲線掃描順序的座標和抽樣後的 YUV 屬性構成的抽樣點雲送入幾何點雲壓縮 (G-PCC) 標準的編碼器進行點雲屬性壓縮編碼。編碼後的位元流傳入解壓器解碼,本文提出了一種同時考慮距離與亮度的聯合雙邊插值方法重建抽樣點雲。基於典型的點雲數據和在 G-PCC 下進行了全面的實驗,與區域適應性分層轉換 (RAHT) 編碼器和最先進的方法相比,我們的方法在客觀質量、知覺效果和品質位元率權衡方面的優勢已得到充分證明。
Given a 3D point cloud in polygon (PLY) file format, in which each point consists of an irregular 3D position and the RGB full-color attribute. Prior to compressing the point cloud, the RGB full-color attribute of each point is first transformed into a YUV attribute. In this thesis, a sorted Hilbert curve scan order-based method is proposed to reorder the irregular 3D positions and the associated color attributes of the point cloud in an increasing Hilbert curve scan order such that the spatial distance between two neighboring reordered points can be reduced. Next, based on the downsampling rate, namely $\frac{1}{k}$, the sorted Hilbert curve scan order-based points are partitioned into $\lceil\frac{n}{k}\rceil$ blocks where $n$ denoted the number of points in the point cloud. Further more, the centroid of the $k$ points in each partitioned block is calculated, and taking the centroid as a base, the nearest neighboring point in the block is determined as the downsampled point. Finally, the downsampled point cloud, which consists of the sorted Hilbert curve scan order-based positions and the downsampled YUV attributes, is fed into the encoder of the Geometry-based Point Cloud Compression (G-PCC) standard for point cloud attribute compression. The encoded bitstream is fed into the decoder. In this thesis, a joint bilateral interpolation method that considers distance and luminance is proposed to reconstruct the downsampled point cloud. Based on typical testing point clouds and under G-PCC, comprehensive experimental data have justified the objective quality, perceptual effect, and quality-bitrate tradeoff merits of the proposed method when compared with the region adaptive hierarchical transform (RAHT) encoder and a state-of-the-art method.
[1] S. N. Sridhara, E. Pavez, A. Ortega, R. Watanabe, and K. Nonaka, “Point cloud attribute
compression via chroma subsampling,” in ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2579–
2583, IEEE, 2022.
[2] G. Sandri, R. L. de Queiroz, and P. A. Chou, “Compression of plenoptic point
clouds,” IEEE Transactions on Image Processing, vol. 28, no. 3, pp. 1419–1427,
2018.
[3] D. C. Garcia, C. Dorea, R. U. Ferreira, D. R. Freitas, R. L. de Queiroz, R. Higa,
I. Seidel, and V. Testoni, “Differential transform for video-based plenoptic point
cloud coding,” IEEE Transactions on Image Processing, vol. 31, pp. 1994–2003,
2022.
[4] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou, R. A. Cohen,
M. Krivokuća, S. Lasserre, Z. Li, et al., “Emerging mpeg standards for point
cloud compression,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 9, no. 1, pp. 133–148, 2018.
[5] E. S. Jang, M. Preda, K. Mammou, A. M. Tourapis, J. Kim, D. B. Graziosi, S. Rhyu,
and M. Budagavi, “Video-based point-cloud-compression standard in mpeg: From
evidence collection to committee draft [standards in a nutshell],” IEEE Signal Processing
Magazine, vol. 36, no. 3, pp. 118–123, 2019.
[6] M. Krivokuća, P. A. Chou, and M. Koroteev, “A volumetric approach to point cloud
compression–part ii: Geometry compression,” IEEE Transactions on Image Processing,
vol. 29, pp. 2217–2229, 2020.
[7] K. Mammou, “Pcc test model category 2 v0,” ISO/IEC JTC1/SC29/WG11 MPEG,
document N17248, Macau, China, 2017.
[8] “G-pcc test model v12,” ISO/IEC JTC1/SC29/WG7 MPEG 3D Graphics Coding,
document N0151, 2020.
[9] P. Chou, O. Nakagami, and E. Jang, “Point cloud compressiontest model for category
1 v0,” ISO/IEC JTC1/SC29/WG11 MPEG, document N17223, Macau, China, 2017.
[10] K. Mammou, “Pcc test model category 3 v0,” ISO/IEC JTC1/SC29/WG11 MPEG,
document N17249, Macau, China, 2017.
[11] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and A. Tabatabai,
“An overview of ongoing point cloud compression standardization activities: Videobased
(v-pcc) and geometry-based (g-pcc),” APSIPA Transactions on Signal and Information
Processing, vol. 9, p. e13, 2020.
[12] H. Liu, H. Yuan, Q. Liu, J. Hou, and J. Liu, “A comprehensive study and comparison
of core technologies for mpeg 3-d point cloud compression,” IEEE Transactions on
Broadcasting, vol. 66, no. 3, pp. 701–717, 2019.
[13] Y. Feng, S. Liu, and Y. Zhu, “Real-time spatio-temporal lidar point cloud compression,”
in 2020 IEEE/RSJ international conference on intelligent robots and systems
(IROS), pp. 10766–10773, IEEE, 2020.
[14] W. Zhu, Y. Xu, D. Ding, Z. Ma, and M. Nilsson, “Lossy point cloud geometry compression
via region-wise processing,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 31, no. 12, pp. 4575–4589, 2021.
[15] X. Zhang and W. Gao, “Adaptive geometry partition for point cloud compression,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 12,
pp. 4561–4574, 2021.
[16] Z. Wang, S. Wan, and L. Wei, “Local geometry-based intra prediction for octreestructured
geometry coding of point clouds,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 33, no. 2, pp. 886–896, 2022.
[17] D. E. Tzamarias, K. Chow, I. Blanes, and J. Serra-Sagristà, “Fast run-length compression
of point cloud geometry,” IEEE Transactions on Image Processing, vol. 31,
pp. 4490–4501, 2022.
[18] X. Sheng, L. Li, D. Liu, and Z. Xiong, “Attribute artifacts removal for geometrybased
point cloud compression,” IEEE Transactions on Image Processing, vol. 31,
pp. 3399–3413, 2022.
[19] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the h. 264/
avc video coding standard,” IEEE Transactions on circuits and systems for video
technology, vol. 13, no. 7, pp. 560–576, 2003.
[20] G. Pastuszak and A. Abramowski, “Algorithm and architecture design of the h. 265/
hevc intra encoder,” IEEE Transactions on circuits and systems for video technology,
vol. 26, no. 1, pp. 210–222, 2015.
[21] “Vtm-16.2,” 2022. Available: https://vcgit.hhi.fraunhofer.de/jvet/
VVCSoftware_VTM/-/tree/VTM-16.2.
[22] R. I.-R. BT et al., “Studio encoding parameters of digital television for standard
4: 3 and wide-screen 16: 9 aspect ratios,” Int. Radio Consultative Committee Int.
Telecommun. Union, Switzerland, CCIR Rep, pp. 624–4, 2011.
[23] L. Jia, B. Liang, M. Li, Y. Liu, Y. Chen, and J. Ding, “Efficient 3d hilbert curve
encoding and decoding algorithms,” Chinese Journal of Electronics, vol. 31, no. 2,
pp. 277–284, 2022.
[24] M. Krivokuca, P. A. Chou, and P. Savill, “8i voxelized surface light field (8ivslf)
dataset,” ISO/IEC JTC1/SC29/WG11 MPEG, input document m42914, 2018.
[25] X. Shang, J. Liang, G. Wang, H. Zhao, C. Wu, and C. Lin, “Color-sensitivity-based
combined psnr for objective video quality assessment,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 29, no. 5, pp. 1239–1250, 2018.
[26] G. Bjontegaard, “Calculation of average psnr differences between rd-curves,” ITU
SG16 Doc. VCEG-M33, 2001.