簡易檢索 / 詳目顯示

研究生: 王哲璿
Che-Hsyan Wang
論文名稱: 分子穩固雙頻膽固醇液晶元件之製備與光電性質研究探討
Fabrication and Characterization of Reverse mode Dual-Frequency Polymer Stabilized Cholesteric Texture cells
指導教授: 李俊毅
Jiunn-Yih Lee
口試委員: 邱士軒
Shih-Hsuan Chiu
王英靖
Ing-Jing Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 129
中文關鍵詞: 膽固醇液晶高分子網雙頻高分子穩固膽固醇液晶紋理
外文關鍵詞: Cholesteric LC, Polymer network, dual-freqency, Polymer-Stabilized-Cholesteric-Texture
相關次數: 點閱:264下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究重點是以dual-frequency液晶為材料,嘗試利用高分子穩定膽固醇液晶紋理 (Polymer Stabilized Cholesteric Texture;PSCT)之顯示技術來研發反射式多穩態、動態膽固醇液晶顯示元件。利用反射紅外光波長之膽固醇液晶摻混少量的紫外光聚合單體後,將材料灌入平行配向元件中,在紫外光照射時高分子隨膽固醇液晶排列方向聚合成長進而影響高分子主要的聚合方向,聚合完之後產生不同方向高分子的拉拔力,其力量將會反過來影響膽固醇液晶分子排列的情形。驗材料利用旋光基濃度10wt%的雙頻向列型液晶形成之膽固醇液晶後又加入不同比例 之RM257紫外光聚合單體以及少量的光起始劑,便可完成雙頻PSCT的製備。隨著高分子濃度的漸增,高分子網的錨定能增強,元件伴隨的著操作的電壓的增加和對比度之下降。當施加一大於其平行方向恢 復能力之低頻電壓值並關掉後,膽固醇液晶分子的排列狀態與高分子拉拔力的互相影響下便會形成光散射狀態之focal-conic狀態;欲回復為光穿透良好之planar狀態則施加一高頻電壓值,利用膽固醇液晶介電異方性之不同切換,兩種穩態因高分子的力量以及基板之配向能力而能夠持續維持透明以及散射兩狀態。元件除了具有reverse mode PSCT快速動態切換的優點,更具有隨著不同電壓值施加而穩定在不同穿透值的多穩態效果。


In this paper, we constracted a polymer stabilized dual frequency cholesteric texture (PSDFCT) cell smoothly in both fast dynamic and steadily muti-stable operations.The research be focused on the use of dual-frequency liquid crystal as device material, and on the driving method of such a novel PSCT. This PSDFCT is a kind of reverse mode PSCT contain with cholesteric liquid crystal(ChLC) mixture and polymer.
polymer stabilized cholesteric texture (PSCT) cells were fabricated using the commercially host liquid crystal Kodak11650/Kodak15320/S-811 and acrylate monomer RM257. Using a proper polymer network, we developed a bistable PSCT light shutter. As increasing polymer concentration, PSDFCT cell exhibits the larger operation voltage and poor constrat ratio because anchoring force from polymer networks become stronger to firmly stabilize the ChLC texture. The switch from planar texture to focal-conic texture is easily triggered by applied a voltage at low frequency (60Hz). The opposite switch from focal-conic to planar texture can achieved by applied voltage at high frequency (35kHz). In particular, the faster and efficient dynamic switch can be realized by varying the frequency of bias due to the dual dielectric anisptropies of ChLC. For multi-stable operation, a larger amplitude of AC bias using to generate the polymer network distortion to directly affect the ChLC mixture. The reciprocal switch between planar texture and focal-conic texture can be also performed by keeping this larger AC bias and varying its frequency

目錄 中文摘要 ..................................................................................................... I Abstract ..................................................................................................... III 誌謝 .......................................................................................................... IV 圖目錄 ...................................................................................................... VI 表目錄 ...................................................................................................... XI 目錄 ......................................................................................................... XII 第一章 緒論............................................................................................... 1 1.1 前言 ...................................................................................................... 1 1.2 液晶介紹 ..................................................................................... 2 1.2.1 液晶簡介 .......................................................................... 2 1.2.2 液晶的形式 ...................................................................... 6 1.3 液晶的基本物理特性 ............................................................... 15 1.3.1 液晶分子排列的秩序參數 ............................................ 16 1.3.2 液晶之介電性質 ............................................................ 18 1.3.3 液晶之雙折射性 ............................................................ 19 1.4 雙頻特性之液晶 ....................................................................... 22 1.5 膽固醇型液晶之介紹 ............................................................... 24 1.5.1 膽固醇型液晶的種類 .................................................... 24 XIII 1.5.2 膽固醇型液晶之光學組織 ............................................ 25 1.5.3 膽固醇型液晶之光電特性 ............................................ 28 1.6 液晶摻混高分子之應用 ........................................................... 34 1.6.1 液晶摻混高分子簡介 .................................................... 34 1.6.2 高分子分散向列型液晶 ................................................ 35 1.6.3 高分子穩固膽固醇液晶 ................................................ 39 第二章-研究背景與目的 ......................................................................... 43 2.1 文獻回顧 ................................................................................... 43 2.2 研究目的與動機 ....................................................................... 45 第三章-實驗內容 ..................................................................................... 46 3.1 實驗系統概述 ........................................................................... 46 3.2 實驗材料與設備 ....................................................................... 49 3.2.1 實驗材料 ........................................................................ 49 3.2.2 實驗設備 ........................................................................ 51 3.3 實驗步驟 ................................................................................... 53 3.4 實驗方法 ................................................................................... 54 3.4.1 Reverse mode PSDFCT液晶材料配製 .......................... 54 3.4.2 Reverse mode PSDFCT元件製作 .................................. 55 3.5 Ch LC/Monomer混合系統 ........................................................ 58 XIV 3.5.1 實驗流程及測量原理 .................................................... 59 3.6光電量測之架構與方法 ............................................................ 60 3.6.1 穿透度之量測方法 ........................................................ 60 3.6.2 液晶相之偏光顯微鏡觀察 ............................................ 61 3.6.3 反應時間量測 ................................................................ 62 3.6.4 介電常數測量 ................................................................ 63 3.6.5 穩態量測 ........................................................................ 65 第四章-結果與討論 ................................................................................. 66 4.1 雙頻膽固醇液晶光閥之材料濃度選擇 ................................... 67 4.1.1 雙頻向列型液晶混和比例 ............................................ 67 4.1.2 雙頻液晶之介電量測 .................................................... 70 4.1.3 旋光機最適濃度 ............................................................ 71 4.2 多穩態-雙頻驅動液晶光閥系統 .............................................. 78 4.2.1 最適之高分子濃度條件 ................................................ 80 4.2.2 多穩態PSDFCT液晶光閥光電性質之研究 ............... 83 4.2.3 記憶效應 ........................................................................ 90 4.2.4 多穩態測試 .................................................................... 91 4.3 Dual-mode雙頻驅動液晶光閥系統 ......................................... 96 4.3.1 Dual-mode 概敘 ............................................................. 96 XV 4.3.2 Dual mode PSDFCT液晶光閥光電性質之研究 ........... 97 4.3.3 Dual-mode 測試 ........................................................... 100 4.3.4反應時間探討 ............................................................... 103 第五章-結論 ........................................................................................... 107 第七章-參考文獻 ...................................................................................

參考文獻
[1] N. A. Vaz, G. W. Smith and P. S. Drzaic, J. Appl. Phys. 60, 2142 (1986).
[2] J. W. Doane, N. A. Vaz, B. G. Wu and S. Zumer, Appl. Phys. Lett. 48, 269 (1986).
[3] N. A. Vaz, G. W. Smith and G. P. Montgomery, Jr., Mol. Cryst. Liq. Cryst. 146, 17 (1987).
[4] G. P. Montgomery and N. A. Vaz, Appl. Opt. 26, 738 (1987).
[5] J. L. West, Mol. Cryst. Liq. Cryst. 157, 427 (1988).
[6] R. A. Weiss and C. K. Ober, Liquid-Crystalline Polymers, American Chemical Society, Washington DC, (1990).
[7] P. S. Drzaic, Liquid Crystal Dispersions, World Scientific, Singapore, (1995).
[8] S. J. Kłosowicz and M. Aleksander, Opto-Electron. Rev. 12, 305 (2004).
[9] D. -K. Yang, L.-C. Chien and J. W. Doane, Appl. Phys. Lett. 60, 3102 (1992).
[10] D. K. Yang and Z. J. Lu, SID Dig. Tech. Pap. 26, 351 (1995).
[11] G. Crawford and S. Zumer, Liquid Crystals in Complex Geometries Formed by Polymer and Porous Networks, Taylor & Francis, London, (1996).
[12] I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe and G. A. Held, J. Appl. Phys. 81 3007 (1997).
[13] I. Dierking, L. L. Kosbar, A. C. Lowe and G. A. Held, Liq. Cryst. 24, 397 (1998).
[14] I. Dierking, Adv. Mater. 12, 167 (2000).
[15] R. -Q. Ma and D. -K. Yang, Phys. Rev. Lett. 61, 1567 (2000).
[16] S. Kang, S. Sprunt and L. C. Chien, Appl. Phys. Lett. 76, 3516 (2000).
[17] S. N. Lee, S. Sprunt and L. C. Chien, Liq. Cryst. 28, 637 (2001).
[18] C. Binet, M. Mitov and M. Mauzac, J. Appl. Phys. 90, 1730 (2001).
[19] S. -T. Wu and D. -K. Yang, Reflective Liquid Crystal Displays, Wiley, New York, (2001).
111
[20] H. Ren and S. -T. Wu, J. Appl. Phys. 92, 797 (2002).
[21] E. Nouvet and M. Mitov, Mol. Cryst. Liq. Cryst. 413, 515 (2004).
[22] M. Mitov, E. Nouvet and N. Dessaud, Eur. Phys. J. E 15, 413 (2004).
[23] D. K. Kim and B. K. Kim, Liq. Cryst. 33, 469 (2006).
[24] C. Y. Huang, Y. S. Chih and S. W. Ke, Appl. Phys. B 86, 123 (2007).
[25] S. Y. Lu and L. C. Chien, Appl. Phys. Lett. 91, 131119 (2007).
[26] C. -J. Tien and C. -Y. Huang, Jpn. J. Appl. Phys. 47, 8515 (2008).
[27] Z. Ge, S. Gauza, M. Jiao, H. Xianyu and S. T. Wu, Appl. Phys. Lett. 94, 101104 (2009).
[28] Y. Yin, W. Li, H. Cao, J. Guo, B. Li, S. He, C. Ouyang, M. Cao, H. Huang and H. Yang, J. Appl. Polym. Sci. 111, 1353 (2009).
[29] F. Reinitzer, Monatshefte, Monatshefte fur Chemie 9, 421 (1888).
[30] F. Reinitzer, Monatshefte, Ann. Physik. 27, 213 (1908).
[31] O. Lehmann, Z. Physik. Chem. 4, 462 (1889).
[32] O. Lehmann, Z. Ann. Physik. 25, 852 (1908).
[33] G. Friedel, Ann. Physik. 18, 273 (1922).
[34] B. Bahadur, Liquid Crystal: Applications and Uses, World Scientific, Singapore (1990).
[35] S. Chandrasekhar, B. K. Sadashiva and K. A. Suresh, Pramana 9, 471 (1977).
[36] I. C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals, World Scientific, Singapore, (1993).
[37] P. J. Collings, Liquid Crystals: Nature's Delicate Phase of Matter, Princeton University Press, New Jersey, (1990).
[38] J. Ma, L. Shi, and D. K. Yang Appl. Phys. Express 3, 021702:1−3 (2010).
[39] P. J. Collings, Michael Hird, Introduction to Liquid Crystals Chemistry and Physics, Taylor & Francis, London, (1996).
[40] 劉瑞祥譯,液晶之基礎與應用,國立編譯館出版 (1996)。
[41] G. W. Gray, Thermotropic Liquid Crystals, John Wiley & Sons, New York, (1987).
[42] V. G. Chigrinov, Liquid Crystal Devices: Physics and Applications, Artech House Publishers, Boston, London, (1999).
[43] F. Rondelez, H. Arnould and C. J. Gerritsma, Phys. Rev. Lett. 28, 735 (1972).
[44] Yaroshchuk, O.V., Dolgov, L.O., Optical Matericals, Vol.2pp1097-1102(2007)
112
[45] Kim, E., Woo, J., Kim, B., Liquid Crystals, Vol.34, pp79-85(2007)
[46] Gotoh, T., Murai, H., Appl. Phys. Lett., Vol.60, pp392-394(1992)
[47] Chien, T.J., Chen, Y.F., Sun, C/H., Wu, J.J., Jpn. J. Appl. Phys., Vol.43, ppL557-L559(2004)
[48] Sukhmal C. J., Ravindra S.T., J. Appl. Phys., Vol.61, pp1641-1642(1992)
[49] Sukhmal C. J., Ravindra S.T., Lakshmikumar, S.T., J. Appl. Phys., Vol.73, pp3744-3748(1993)
[50] Liu, J.H., Tsai, F.R., Tsai, T.Y., Polym. Adv. Technol., Vol.11, pp228-234(2000)
[51] Andy Fuh, Y.G., Huang C.Y., Tsai, M.S., Lin, G.L., Chinese Journal of Physics ,Vol.33, pp291-302(1995)
[52] Ko, T.C., Fan, Y.H., Seieh, M.H., Andy Fuh, Y.G.., Huang, C.Y., Tsai, M.S., Jiang, I.M., Jpn. J. Appl. Phys., Vol.40,pp2255-2258(2001)
[53] Lo, K.Y., Huang, C.Y., Hsu, G.C., Hsu, H.T., Andy Fuh, Y.G., Jpn. J. Appl. Phys., Vol.42, pp3531-3534(2003)
[54] Lin, Y.H., Ren, H., Fan, Y.H., Wu, Y.H., Wu, S.T., J. Appl. Phys., Vol.98, pp043112-1-4(2005)
[55] Huang, C.Y., Ke, S.W., Chih, Y.S., Optics Communications, Vol.266, pp198-202(2006)
[56] Yin, Y., Li, W., Cao, H., Guo, J., Li, B., He, S., Ouyang, C., Cao, M., Huang, H., Yang, H., Journal of Applied Polymer Science, Vol.111, pp1353-1357(2009)
[57] Ren, H., Wu, S.T., J.Appl.Phys., Vol.92, pp797-800(2002)
[58] Wang, Q.B., Ma, Z.J., Li, H.F., Li, X., Huang, X.M., Proceeding of
113
SPIE, Vol.4147, pp-353-358(2000)
[59] J. L. Fergason, SID Int. Symp. Digest of Paper 16, 68 (1985).
[60] J. W. Doane, N. A. Vaz, B. G. Wu and S. Zumer, Appl. Phys. Lett. 48, 269 (1986).
[61] N. A. Vaz, G. W. Smith and P. S. Drzaic, J. Appl. Phys. 60, 2142 (1986).
[62] N. A. Vaz, G. W. Smith and G. P. Montgomery, Jr., Mol. Cryst. Liq. Cryst. 146, 17 (1987).
[63] J. L. West, Mol. Cryst. Liq. Cryst. 157, 427 (1988).
[64] P. S. Drzaic, Liquid crystal dispersions, World Scientific, Singapore, (1995).
[65] D. -K. Yang, L. -C. Chien and J. W. Doane, Appl. Phys. Lett. 60, 3102 (1992).
[66] D. -K. Yang, J. L. West and J. W. Doane, Appl. Phys. Lett. 76, 1331 (1994).
[67] G. Crawford and S. Zumer, Liquid Crystals in Complex Geometries Formed by Polymer and Porous Networks, Taylor & Francis, London, (1996).
[68] J. Ma, L. Shi and D. -K. Yang, Appl. Phys. Express 3, 021702 (2010).
[69] P. R. Gerber, Appl. Phys. Lett. 44, 171918 (1984).
[70] M. Xu and D. -K. Yang, Appl. Phys. Lett. 70, 720 (1997).
[71] C. Y. Huang, R. X. Fung, Y. G. Lin and C. T. Hsieh, Appl. Phys. Lett. 90, 171918 (2007).

QR CODE