簡易檢索 / 詳目顯示

研究生: 琪琪
Rezi Ulya Fauziah
論文名稱: 透過多媒體以探索解釋性回饋對學生概念理解和心智模型對化學平衡的影響
Exploring the Influence of Explanatory Feedback on Students' Conceptual Understanding and Mental Model on Chemical Equilibrium through Multimedia
指導教授: 王嘉瑜
Chia-Yu Wang
陳素芬
Sufen Chen
口試委員: 顏妙璇
Miao Hsuan Yen
學位類別: 碩士
Master
系所名稱: 人文社會學院 - 數位學習與教育研究所
Graduate Institute of Digital Learning and Education
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 84
中文關鍵詞: 化學平衡一般化學概念理解心理模型解釋性回饋
外文關鍵詞: chemical equilibrium, general chemistry, conceptual understanding, mental model, explanatory feedback
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


ABSTRACT IN CHINESE I ABSTRACT IN ENGLISH II ACKNOWLEDGEMENT III TABLE OF CONTENTS V LIST OF TABLES VII LIST OF FIGURES VIII CHAPTER 1. INTRODUCTION 1 2. LITERATURE REVIEW 3 2.1 Chemical equilibrium and related mental models 3 2.2 Learning chemistry concepts meaningfully through multimedia 4 2.3 Functions of Explanatory Feedback 5 2.4 Empirical findings on effects of explanatory feedback 6 3. METHODOLOGY 9 3.1 Participants 9 3.2 The design of the multimedia learning materials and the explanatory feedback 15 3.3 Research Instruments 15 3.3.1 Pre- and post-test 16 3.3.2 Mental model questions 16 3.3.3 Students’ multimedia learning behavior data 19 3.4 Implementation of the study 19 3.5 Data Analysis 20 3.5.1 Conceptual understanding 20 3.5.2 Mental model characteristics 20 3.5.3 Students’ multimedia learning behavior data 22 4. FINDINGS 23 4.1 Effect of multimedia material with explanatory feedback in facilitating conceptual understanding 23 4.2 The effect of the multimedia material with explanatory feedback in shifting mental models 23 4.3 Students’ multimedia learning behavior and cluster memberships in two learning unit 27 4.3.1 Explanatory feedback average time spent 27 4.3.2 Video rewatch attempts 30 4.3.3 Scores of the formative assessment items during multimedia learning 32 4.3.4 Learning Performance and Multimedia Behavior: A Comparison Across Student Mental Models 34 5. DISCUSSION, CONCLUSION, IMPLICATION, AND LIMITATION 43 5.1 Discussion and Conclusion 43 5.1.1 Students’ conceptual understanding and shift in mental model after learning with explanatory feedback 43 5.1.2 Students’ multimedia learning behaviors and their mental model coherence 43 5.3 Limitations 44 REFERENCES 47 APPENDIX 1: Concept Map 51 APPENDIX 2: Pre- and Post-test 52 APPENDIX 3: Mental model questions 63 APPENDIX 4: Features of different mental models chemical equilibrium 70

Attali, Y., & van der Kleij, F. (2017). Effects of feedback elaboration and feedback timing during computer-based practice in mathematics problem solving. Computers & Education, 110, 154-169. http://dx.doi.org/10.1016/j.compedu.2017.03.012.
Bernstein, E., McMenamin, S. A., & Johanek, M. C. (2016). Authentic Online Branching Simulations: Promoting Discourse around Problems of Practice. In P. Dickenson, U. National University, J. J. Jaurez, & U. National University (Eds.), Student Engagement and Participation (pp. 1197–1216). IGI Global.
Butler, A. C., Karpicke, J. D., & Roediger, H. L., III. (2008). Correcting a metacognitive error: feedback increases retention of low-confidence correct responses. Journal of Experimental Psychology, 34, 918–928. doi: 10.1037/0278-7393.34.4.918.
Chiu, M. H., Chou, C. C., & Liu, C. J. (2002). Dynamic processes of conceptual change: analysis of constructing mental models of chemical equilibrium. Journal of Research in Science Teaching, 39(8), 688-712. DOI: 10.1002/tea.10041
Devetak, I., Urbančič, M., Wissiak Grm, K. S., Krnel, D., & Glažar, S. A. (2004). Submicroscopic representations as a tool for evaluating students’ chemical conceptions. Acta Chimica Slovenica, 51(4), 799-814.
Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data. Cambridge, MA: MIT Press.
Finn, B., Thomas, R., Rawson, K, A. (2018). Learning more from feedback: elaborating feedback with examples enhances concept learning. Learning and Instruction, 54, 104-113.
Greca, I. M., & Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International Journal of Science Education, 22(1), 2-11. https://doi.org/10.1080/095006900289976.
Hattie, J. (2009). Visible learning: A synthesis of 800+ meta-analyses on achievement. London: Routledge.
Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112. https://doi.org/10.3102/003465430298487
Huan, C., Meng, C.C., Lian, L. H. (2020). Incorporating feedback in online cognitive diagnostic assessment for enhancing grade five students' achievement in 'time'. Journal of Computer Education, DOI: 10.1007/s40692-020-00176-3
Jaber, L. Z., & BouJaoude, S. (2012). A macro–micro–symbolic teaching to promote relational understanding of chemical reactions. International Journal of Science Education, 34(7), 973–998.
Johnson, C. I., & Priest, H. A. (2014). The feedback principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 449–463). Cambridge: Cambridge University Press.
Johnson-Laird, P. N. (1983). Mental models. Towards a cognitive science of language, inference, and consciousness. Cambridge, UK: Cambridge University Press.
Kozma, R., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 43(9), 949–968.
Lindgren, R., & Schwartz, D. L. 2009. Spatial learning and computer simulations in science. International. Journal of Science Education, 31, 419–438.
Lipnevich, A., & Smith, J, K. 2009. Effects of differential feedback on students' examination performance. Journal of Experimental Psychology Applied, 15(4), 319-333. DOI: 10.1037/a0017841
Luyben, P. D., Warden, K. B. 2008. Comparative effects of video plus-text versus text-only instructional formats on acquisition and generalization of concept learning to real life situations. Journal of Education Technology Systems, 37(2), 159-174. https://doi.org/10.2190/ET.37.2.d
Máñez, I., Vidal-Abarca, E., & Martínez, T. (2019). Does computer-based elaborated feedback influence the students’ question-answering process? Electronic Journal of Research in Educational Psychology, 17(1), 81-106.
Makransky, G., Mayer, R., Noremolle, A., Cordoba, A. L., Wandali, J., & Bonde, M. (2019). Investigating the feasibility of using assessment and explanatory feedback in desktop virtual reality simulations. Education Technology Research Development, 68, 283-317. https://doi.org/10.1007/s11423-019-09690-3.
Mayer, R. E., & Moreno, R. (2002). Aids to computer-based multimedia learning. Learning and Instruction, 12, 107–119.
Meir, E., Wendel, D., Pope, D. S. Hsiao, L., Chen, D., & Kim, K, J. (2019). Are intermediate constraint question formats useful for evaluating student thinking and promoting learning in formative assessments?. Computers and education, 141, 103606. https://doi.org/10.1016/j.compedu.2019.103606
Norman, D. (1983). Some observations on mental models. In D. Gentner and A. Stevens (Eds. Mental models (pp. 6-14). Lawrence Erlbaum Associates, Hillsdale, NJ.
O'Keefe, P. A., Letourneau, S. M., Homer, B. D., Schwartz, R. N., & Plass, J. L. (2014). Learning from multiple representations: An examination of fixation patterns in a science simulation. Computers in Human Behavior, 35, 234–242. doi:10.1016/j.chb.2014.02.040.
Prokša, M., Drozdíková, A., & Haláová, Z. (2019). Learners’ understanding of chemical equilibrium at submicroscopic, macroscopic, and symbolic levels. Chemistry Didactics Ecology Metrology, 23(1).
Pulukuri, S., & Abrams, B. 2021. Improving learning outcomes and metacognitive monitoring: replacing traditional textbook readings with questions-embedded videos. Journal Chemistry Education, 98, 2156-2166. https://doi.org/10.1021/acs.jchemed.1c00237.
Serral, E., & Snoeck, M. (2019). Conceptual framework for feedback automation in sles. In Smart education and e-learning 2016 (pp. 97–107). Springer.
Shehab, S. S., & BouJaoude, S. (2017). Analysis of the chemical representations in secondary Lebanese chemistry textbooks. International Journal of Science and Mathematics Education, 15, 797-816. DOI 10.1007/s10763-016-9720-3.
Shute, V. J. 2008. Focus on formative feedback. Review of Educational Research, 78(1), 153-189. DOI: 10.3102/0034654307313795
Stieff, M., & McCombs, M. (2006). Increasing representational fluency with visualization tools. In S. Barab, K. E. Hay, & D. T. Hickey (Eds.), Proceedings of the Seventh International Conference of the Learning Sciences (ICLS) (Vol. 1, pp. 730–736). Mahwah, NJ: Erlbaum.
Talanquer, V. (2010). Macro, submicro, and symbolic: the many faces of the chemistry triplet. International Journal of Science Education, 32, 1–17.
Van der Kleij, F. M., Feskens, R. C., & Eggen, T. J. H. M. (2015). Effects of feedback in a computer-based learning environment on students' learning outcomes: A meta-analysis. Review of Educational Research, 85, 475–511. doi: 10.3102/0034654314564881
Waight, Noemi., & Gillmeister, Kristina. (2014). Teachers and Students’ Conceptions of Computer-Based Models in the Context of High School Chemistry: Elicitations at the Pre-intervention Stage. Research in Science Education, 44(2), 335-361. DOI 10.1007/s11165-013-9385-7
Zumdahl, S. (2017). Chemistry AP Edition (10th ed.). Cengage.

無法下載圖示 全文公開日期 2026/02/16 (校內網路)
全文公開日期 2026/02/16 (校外網路)
全文公開日期 2026/02/16 (國家圖書館:臺灣博碩士論文系統)
QR CODE