簡易檢索 / 詳目顯示

研究生: 張沛承
Pei-Cheng Chang
論文名稱: 以改良型灰狼演算法克服遮蔽問題之太陽能最大功率追蹤演算法
A Modified Grey Wolf Optimization Algorithm for Photovoltaic Maximum Power Point Tracking Control Under Partial Shading
指導教授: 連國龍
Kuo-Lung Lian
口試委員: 連國龍
Kuo-Lung Lian
林長華
Chang-Hua Lin
黃維澤
Wei-Tzer Huang
方中傑
Chung-Chieh Fang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 65
中文關鍵詞: 部分遮蔭現象太陽能最大功率追蹤光伏系統灰狼演算法
外文關鍵詞: Partial Shading Condition, Maximum Power Point Tracking, Photovoltaic System, Grey Wolf Optimizer
相關次數: 點閱:348下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在太陽能系統中,其中最常見的問題就是部分遮蔭的情形,這造成了太陽能系統的功率輸出有大幅的減少。元啟發式演算法可以在多峰的功率-電壓曲線中追蹤到最大功率點,常見的元啟發式演算法都已經應用在太陽能最大功率的追蹤上,有粒子群演算法、人工蜂群演算法、蟻群演算法和布穀鳥搜索演算法。
    灰狼演算法是一個新的元啟發式演算法,它可以解決許多應用中的優化問題,包括太陽能的最大功率追蹤。然而在照度快速變化的情況下,原始灰狼演算法的準度和追蹤時間仍可以被改善,因此已經提出了一些改良型灰狼演算法來改善,但是這些只有小部分地改進。
    因此,本文提出了一個增強型改良灰狼演算法,本文方法在灰狼演算法中加入了非線性的收斂因子、加權平均和狼撲的行為。透過模擬和實驗測試,本文提出的增強型改良灰狼演算法大幅地縮短了追蹤時間(約為灰狼演算法的60%)且達到最高的最大功率點。


    Partial shading condition (PSC) is one of the most common problems in the
    photovoltaic (PV) system. It causes the output power of a PV system drastically
    decrease. Meta-heuristic algorithms (MHA) can track the maximum power point in
    a multiple-peak power-voltage curve. The common MHAs, such as particle swarm
    optimization (PSO), artificial bee colony (ABC), ant colony optimization (ACO) and
    cuckoo search (CS) have been used for maximum power point tracking (MPPT).
    Grey wolf optimization (GWO) algorithm is a new optimization algorithm based
    on MHA. It has been used to solve optimization problems in many applications including MPPT for a PV system. However, the accuracy and tracking time in the
    conventional GWO can still be improved for the condition of rapidly changing irradiance. Therefore, there have been some modified grey wolf optimization (MGWO) algorithms proposed to improve the GWO. Nevertheless, only incremental improvement has been made.
    Therefore, an enhanced modified grey wolf optimization (EMGWO) is proposed
    in this thesis. The proposed method adds the weighting average, the pouncing behavior and nonlinear convergence factor in the GWO. As will be shown via simulation and experiment, the proposed EMGWO can drastically reduce the tracking
    time (about 60% of the GWO) and achieve the highest maximum power point.

    1 INTRODUCTION 1.1 Background & Motivation 1.2 Outline 2 PV MODEL and PARTIAL SHADING PROBLEM 2.1 PV Model 2.2 Partial Shading Problem 3 GREY WOLF ALGORITHM 3.1 Overview 3.2 Mathematical Model 3.3 Review of Other Modified Grey Wolf Optimizer 3.3.1 Mittal's MGWO Algorithm 3.3.2 Ma's MGWO Algorithm 4 PROPOSED EMGWO ALGORITHM and EVALUATION RESULT 4.1 Proposed EMGWO Algorithm 4.2 Simulation Result 4.3 Experimental Set up 4.4 Experimental Result 4.4.1 Static Case 4.4.2 Dynamic Case 5 CONCLUSION & FUTURE WORK 5.1 Conclusion 5.2 Future Work REFERENCE

    [1] A. J. Nozik, Photoelectrochemistry: Applications to solar energy conversion,
    Annual Review of Physical Chemistry, vol. 29, no. 1, pp. 189222, 1978.
    [Online]. Available: https://doi.org/10.1146/annurev.pc.29.100178.001201
    [2] G. Petrone, G. Spagnuolo, R. Teodorescu, M. Veerachary, and M. Vitelli, Re-
    liability issues in photovoltaic power processing systems, IEEE Transactions
    on Industrial Electronics, vol. 55, no. 7, pp. 25692580, July 2008.
    [3] D. F. Teshome, C. H. Lee, Y. W. Lin, and K. L. Lian, A modied rey
    algorithm for photovoltaic maximum power point tracking control under partial
    shading, IEEE Journal of Emerging and Selected Topics in Power Electronics,
    vol. 5, no. 2, pp. 661671, June 2017.
    [4] D. C. Jones and R. W. Erickson, Probabilistic analysis of a generalized perturb
    and observe algorithm featuring robust operation in the presence of power curve
    traps, IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 29122926,
    June 2013.
    [5] R. C. N. Pilawa-Podgurski, W. Li, I. Celanovic, and D. J. Perreault, Integrated
    cmos energy harvesting converter with digital maximum power point tracking
    for a portable thermophotovoltaic power generator, IEEE Journal of Emerging
    and Selected Topics in Power Electronics, vol. 3, no. 4, pp. 10211035, Dec 2015.
    [6] B. N. Alajmi, K. H. Ahmed, S. J. Finney, and B. W. Williams, Fuzzy-logic-
    control approach of a modied hill-climbing method for maximum power point
    in microgrid standalone photovoltaic system, IEEE Transactions on Power
    Electronics, vol. 26, no. 4, pp. 10221030, April 2011.
    [7] G. Hsieh, H. Hsieh, C. Tsai, and C.Wang, Photovoltaic power-increment-aided
    incremental-conductance mppt with two-phased tracking, IEEE Transactions
    on Power Electronics, vol. 28, no. 6, pp. 28952911, June 2013.
    [8] J. Ahmed and Z. Salam, An enhanced adaptive p and o mppt for fast and
    efficient tracking under varying environmental conditions, IEEE Transactions
    on Sustainable Energy, vol. 9, no. 3, pp. 14871496, July 2018.
    51
    [9] J. Ahmed and Z. Salam, A modified p and o maximum power point tracking
    method with reduced steady-state oscillation and improved tracking efficiency,
    IEEE Transactions on Sustainable Energy, vol. 7, no. 4, pp. 15061515, Oct
    2016.
    [10] Syafaruddin, E. Karatepe, and T. Hiyama, Artificial neural network-polar co-
    ordinated fuzzy controller based maximum power point tracking control under
    partially shaded conditions, IET Renewable Power Generation, vol. 3, no. 2,
    pp. 239253, June 2009.
    [11] K. Ishaque and Z. Salam, A review of maximum power point tracking
    techniques of pv system for uniform insolation and partial shading condition,
    Renewable and Sustainable Energy Reviews, vol. 19, pp. 475  488,
    2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
    S1364032112006442
    [12] Y.-H. Liu, J.-H. Chen, and J.-W. Huang, A review of maximum power point
    tracking techniques for use in partially shaded conditions, Renewable and
    Sustainable Energy Reviews, vol. 41, pp. 436  453, 2015. [Online]. Available:
    http://www.sciencedirect.com/science/article/pii/S136403211400714X
    [13] J. Kennedy and R. Eberhart, Particle swarm optimization, in Proceedings of
    ICNN'95 International Conference on Neural Networks, vol. 4, Nov 1995, pp.
    19421948 vol.4.
    [14] K. Ishaque, Z. Salam, M. Amjad, and S. Mekhilef, An improved particle swarm
    optimization based mppt for pv with reduced steady-state oscillation, IEEE
    Transactions on Power Electronics, vol. 27, no. 8, pp. 36273638, Aug 2012.
    [15] Y. Liu, S. Huang, J. Huang, and W. Liang, A particle swarm optimization
    based maximum power point tracking algorithm for pv systems operating under
    partially shaded conditions, IEEE Transactions on Energy Conversion, vol. 27,
    no. 4, pp. 10271035, Dec 2012.
    [16] K. Ishaque and Z. Salam, A deterministic particle swarm optimization max-
    imum power point tracker for photovoltaic system under partial shading con-
    52
    dition, IEEE Transactions on Industrial Electronics, vol. 60, no. 8, pp. 3195
    3206, Aug 2013.
    [17] K. Kaced, C. Larbes, N. Ramzan, M. Bounabi, and Z. elabadine Dahmane,
    Bat algorithm based maximum power point tracking for photovoltaic system
    under partial shading conditions, Solar Energy, vol. 158, pp. 490  503,
    2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
    S0038092X17308599
    [18] L. L. Jiang, D. L. Maskell, and J. C. Patra, A novel ant colony
    optimization-based maximum power point tracking for photovoltaic systems
    under partially shaded conditions, Energy and Buildings, vol. 58, pp. 227 
    236, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/
    pii/S0378778812006366
    [19] J. Ahmed and Z. Salam, A maximum power point tracking (mppt)
    for pv system using cuckoo search with partial shading capability,
    Applied Energy, vol. 119, pp. 118  130, 2014. [Online]. Available:
    http://www.sciencedirect.com/science/article/pii/S0306261914000026
    [20] K. Sundareswaran, P. Sankar, P. S. R. Nayak, S. P. Simon, and S. Palani,
    Enhanced energy output from a pv system under partial shaded conditions
    through artificial bee colony, IEEE Transactions on Sustainable Energy, vol. 6,
    no. 1, pp. 198209, Jan 2015.
    [21] S. Lyden and M. E. Haque, A simulated annealing global maximum power
    point tracking approach for pv modules under partial shading conditions, IEEE
    Transactions on Power Electronics, vol. 31, no. 6, pp. 41714181, June 2016.
    [22] H. M. Hasanien, Shued frog leaping algorithm for photovoltaic model identi-
    cation, IEEE Transactions on Sustainable Energy, vol. 6, no. 2, pp. 509515,
    April 2015.
    [23] R. Subha and S. Himavathi, Mppt of pv systems under partial shaded condi-
    tions using ower pollination algorithm, in 2017 International Conference on
    Innovations in Electrical, Electronics, Instrumentation and Media Technology
    (ICEEIMT), Feb 2017, pp. 206210.
    53
    [24] S. Mirjalili, S. M. Mirjalili, and A. Lewis, Grey wolf optimizer, Advances
    in Engineering Software, vol. 69, pp. 46  61, 2014. [Online]. Available:
    http://www.sciencedirect.com/science/article/pii/S0965997813001853
    [25] S. Mohanty, B. Subudhi, and P. K. Ray, A new mppt design using grey wolf
    optimization technique for photovoltaic system under partial shading condi-
    tions, IEEE Transactions on Sustainable Energy, vol. 7, no. 1, pp. 181188,
    Jan 2016.
    [26] H. A. B. Siddique, P. Xu, and R. W. De Doncker, Parameter extraction algorithm for one-diode model of pv panels based on datasheet values, in 2013
    International Conference on Clean Electrical Power (ICCEP), June 2013, pp.
    713.
    [27] C. Muro, R. Escobedo, L. Spector, and R. Coppinger, Wolf-pack (canis lupus)
    hunting strategies emerge from simple rules in computational simulations,
    Behavioural Processes, vol. 88, no. 3, pp. 192  197, 2011. [Online]. Available:
    http://www.sciencedirect.com/science/article/pii/S0376635711001884
    [28] N. Mittal, U. Singh, and B. S. Sohi, Modied grey wolf optimizer for
    global engineering optimization, Applied Computational Intelligence and Soft
    Computing, 2016. [Online]. Available: https://www.hindawi.com/journals/
    acisc/2016/7950348/cta/
    [29] X. Ma, D. Jiandong, W. Xiao, S. Tuo, W. Yanhang, and S. Ting, Research
    of photovoltaic systems mppt based on improved grey wolf algorithm under
    partial shading conditions, 10 2018, pp. 16.
    [30] X. Shan, K. Liu, and P.-L. Sun, Modified bat algorithm based on levy flight
    and opposition based learning, Scientific Programming, p. 13, 2016. [Online].
    Available: https://www.hindawi.com/journals/sp/2016/8031560/abs/
    [31] B. S. I. Sta, Overall Eciency of Grid Connected Photovoltaic Inverters. B
    S I Standards, 2010. [Online]. Available: https://books.google.com.tw/books?
    id=NXTknAEACAAJ

    無法下載圖示 全文公開日期 2024/08/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE