簡易檢索 / 詳目顯示

研究生: 梁雅翔
Ya-Hsiang Liang
論文名稱: 以自組裝分子膜修飾氧化銦鎵鋅薄膜與閘極絕緣層界面之薄膜電晶體研究
Modification of the IGZO Gate Isolator in Thin Film Transistors by Molecular Self-Assembled Films
指導教授: 何郡軒
戴龑
Michael Zharnikov
口試委員: 劉舜維
Shun-Wei Liu
戴龑
Yian Tai
何郡軒
Jinn-Hsuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 103
中文關鍵詞: 薄膜電晶體氧化銦鎵鋅自組裝分子膜
外文關鍵詞: Thin Film Transistors, IGZO, Molecular Self-Assembled Films
相關次數: 點閱:218下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

一般而言,薄膜電晶體使用黃光微影製程來進行圖案化以防止柵極漏電流,但是該方法不適合用於溶液製程的薄膜電晶體。我們開發了一種簡單快速的方法,透過旋轉塗佈自組裝單分子來製造具有低柵極漏電流的薄膜電晶體。通過在半導體和介電層之間的介面處引入特定的偶極矩來操控局部的內置電場,以降低電子被捕獲到介電層界面缺陷的可能性。我們證明矽烷分子的偶極矩在半導體和介電層的異質界面之間的垂直傳輸中有著重要作用。透過X光射線電子能譜儀光譜和薄膜電晶體中柵極漏電流的程度來評估介面處偶極層內的偶極子的排列取向。


Typically, TFTs are patterned by photolithography to prevent gate leakage current but this method is not suitable for the solution processed top-gate staggered TFTs. We developed a simple and rapid approach to fabricate TFTs with low gate leakage current by spin-coating of the gate insulator with molecular self-assembled films. The local built-in electric field is manipulated by introducing a specific dipole moment at the interface between the semiconductor and the dielectric layer to reduce the probability of electron trapping to the trap sites at the interface of the dielectric layer. We demonstrate that the dipole moment of silane-based self-assembled molecules plays an important role in vertical transport of electrons between heterointerface of semiconductor and dielectric layer. The arrangement of dipolar molecules at the interface affects the net dipole moment, which is evaluated by XPS results and extent of gate leakage current in TFTs.

CONTENTS 中文摘要 i ABSTRACT ii Acknowledgement iii CONTENTS vii LIST OF FIGURES x LIST OF TABLES xiv Chapter 1 Introduction and Literature Review 1 1.1 Amorphous Oxide Semiconductors 1 1.1.1 Background 1 1.1.2 Advantages 2 1.2 Fundamental Properties and Physics of a-IGZO 4 1.2.1 Electronic Structure 4 1.2.2 Carrier Transport Mechanism 5 1.2.3 Density of States 7 1.3 Thin Film Transistor 9 1.3.1 TFT Configuration and Working Principle 9 1.3.2 Electrical Parameters 11 1.4 Self-Assembled Monolayers 13 1.4.1 Introduction 13 1.4.2 Applications on TFTs 16 Chapter 2 Motivations for the Research 18 2.1 Issue on Solution Process Thin Film Transistor 18 2.2 Origin of Gate Leakage Current 19 Chapter 3 Experimental Section 22 3.1 Materials 22 3.1.1 Substrates and Electrodes 22 3.1.2 Materials of Active Layer and Dielectric layer 22 3.1.3 Materials of SAMs 22 3.1.4 Solvent 23 3.2 Experimental Procedure 23 3.2.1 Preparation of SAM 23 3.2.2 Preparation of IGZO Precursor Solution 23 3.2.3 Fabrication of Patterned ITO Substrate 24 3.2.4 Device Fabrication 24 3.3 Characterization and Analysis 25 3.4 Instrumental Analysis 28 3.4.1 X-ray Photoelectron Spectroscopy 28 3.4.2 Contact Angle Goniometry 29 3.4.3 Field-Emission Scanning Electron Microscope 30 3.4.4 Electrical Conductance Measurement 30 3.4.5 Spectrofluorometer 31 Chapter 4 Results and Discussion 32 4.1 Surface Characteristics of Self-Assembled Molecular Film 32 4.1.1 Optimization of TFPTMS Formation Condition on IGZO Surface 32 4.1.2 Static Contact Angle for Self-Assembled Molecular Film on IGZO Surface 36 4.1.3 XPS Analysis of Self-Assembled Molecular Films on IGZO Substrates 38 4.1.4 Effect of Different Cleaning Method 43 4.2 Characteristics of Self-Assembled Molecules Modified IGZO TFT 45 4.2.1 Electrical Characteristics 45 4.2.2 Thickness of Dielectric Layer 52 4.3 Analysis of Self-Assembled Molecules on IGZO Surface 54 4.3.1 Analysis of Electrical Conductance 54 4.3.2 Quantitative Analysis 56 4.4 Effect of UV Treatment on IGZO TFT 60 4.4.1 Electrical Characteristics 60 4.4.2 Analysis of Defects in IGZO film 64 4.5 Optimization of Self-Assembled Molecules Modified IGZO TFT 66 4.5.1 Self-Assembled Molecules Modified TFT without UV Treatment 66 4.5.2 PTES Modified TFT with Different Time for UV Treatment 70 Chapter 5 Conclusions and Outlook 73 REFERENCE 75

REFERENCE

1 Boesen, G. & Jacobs, J. E. ZnO field-effect transistor. Proceedings of the IEEE 56, 2094-2095 (1968).
2 Hosono, H., Kikuchi, N., Ueda, N. & Kawazoe, H. Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples. Journal of Non-Crystalline Solids 198, 165-169 (1996).
3 Hebard, A. & Nakahara, S. Structural phase transitions of indium/indium oxide thin‐film composites. Applied Physics Letters 41, 1130-1132 (1982).
4 Bellingham, J., Phillips, W. & Adkins, C. Amorphous indium oxide. Thin Solid Films 195, 23-32 (1991).
5 Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488 (2004).
6 Petti, L. et al. Metal oxide semiconductor thin-film transistors for flexible electronics. Applied Physics Reviews 3, 021303 (2016).
7 Kamiya, T., Nomura, K. & Hosono, H. Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping. Journal of display Technology 5, 468-483 (2009).
8 Masetti, G. & Solmi, S. Relationship between carrier mobility and electron concentration in silicon heavily doped with phosphorus. IEE Journal on Solid-State and Electron Devices 3, 65-68 (1979).
9 Nomura, K. et al. Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO 3 (Z nO) 5 films. Applied Physics Letters 85, 1993-1995 (2004).
10 Takagi, A. et al. Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4. Thin solid films 486, 38-41 (2005).
11 Adler, D., Flora, L. P. & Senturia, S. D. Electrical conductivity in disordered systems. Solid State Communications 12, 9-12 (1973).
12 Kamiya, T., Nomura, K. & Hosono, H. Present status of amorphous In–Ga–Zn–O thin-film transistors. Science and Technology of Advanced Materials 11, 044305 (2010).
13 Klauk, H. Organic thin-film transistors. Chemical Society Reviews 39, 2643-2666 (2010).
14 Shichman, H. & Hodges, D. A. Modeling and simulation of insulated-gate field-effect transistor switching circuits. IEEE Journal of Solid-State Circuits 3, 285-289 (1968).
15 Ortiz-Conde, A. et al. A review of recent MOSFET threshold voltage extraction methods. Microelectronics reliability 42, 583-596 (2002).
16 Geng, D., Kang, D. H., Seok, M. J., Mativenga, M. & Jang, J. High-speed and low-voltage-driven shift register with self-aligned coplanar a-IGZO TFTs. IEEE Electron Device Letters 33, 1012-1014 (2012).
17 Salvatore, G. A. et al. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nature communications 5, 2982 (2014).
18 Witczak, S. C., Suehle, J. S. & Gaitan, M. An experimental comparison of measurement techniques to extract Si-SiO2 interface trap density. Solid-state electronics 35, 345-355 (1992).
19 Jeong, J. H. et al. Origin of subthreshold swing improvement in amorphous indium gallium zinc oxide transistors. Electrochemical and Solid-State Letters 11, H157-H159 (2008).
20 Scheinert, S. et al. Subthreshold characteristics of field effect transistors based on poly (3-dodecylthiophene) and an organic insulator. Journal of Applied Physics 92, 330-337 (2002).
21 Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical reviews 105, 1103-1170 (2005).
22 Schreiber, F. Structure and growth of self-assembling monolayers. Progress in surface science 65, 151-257 (2000).
23 DiBenedetto, S. A., Facchetti, A., Ratner, M. A. & Marks, T. J. Molecular Self‐Assembled Monolayers and Multilayers for Organic and Unconventional Inorganic Thin‐Film Transistor Applications. Advanced materials 21, 1407-1433 (2009).
24 Kymissis, I., Dimitrakopoulos, C. & Purushothaman, S. High-performance bottom electrode organic thin-film transistors. IEEE Transactions on Electron Devices 48, 1060-1064 (2001).
25 Hong, J.-P. et al. Tuning of Ag work functions by self-assembled monolayers of aromatic thiols for an efficient hole injection for solution processed triisopropylsilylethynyl pentacene organic thin film transistors. Applied Physics Letters 92, 131 (2008).
26 Kobayashi, S. et al. Control of carrier density by self-assembled monolayers in organic field-effect transistors. Nature materials 3, 317 (2004).
27 Vuillaume, D., Boulas, C., Collet, J., Davidovits, J. & Rondelez, F. Organic insulating films of nanometer thicknesses. Applied Physics Letters 69, 1646-1648 (1996).
28 Halik, M. et al. Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature 431, 963 (2004).
29 Kim, S. J., Yoon, S. & Kim, H. J. Review of solution-processed oxide thin-film transistors. Japanese Journal of Applied Physics 53, 02BA02 (2014).
30 Walker, D. E. et al. High mobility indium zinc oxide thin film field-effect transistors by semiconductor layer engineering. ACS applied materials & interfaces 4, 6835-6841 (2012).
31 Xu, W., Wang, H., Ye, L. & Xu, J. The role of solution-processed high-κ gate dielectrics in electrical performance of oxide thin-film transistors. Journal of Materials Chemistry C 2, 5389-5396 (2014).
32 Sung, S. et al. Direct patterning of sol–gel metal oxide semiconductor and dielectric films via selective surface wetting. RSC Advances 5, 38125-38129 (2015).
33 Seong, K., Kim, K., Park, S. Y. & Kim, Y. S. Micro-patterned ZnO semiconductors for high performance thin film transistors via chemical imprinting with a PDMS stamp. Chemical Communications 49, 2783-2785 (2013).
34 Gu, C. & Lee, J.-S. Patterning of amorphous-InGaZnO thin-film transistors by stamping of surface-modified polydimethylsiloxane. RSC Advances 6, 43147-43151 (2016).
35 Lee, J. et al. Vertical Transport Control of Electrical Charge Carriers in Insulator/Oxide Semiconductor Hetero-structure. Scientific reports 8, 5643 (2018).
36 Chiu, F.-C. A review on conduction mechanisms in dielectric films. Advances in Materials Science and Engineering 2014 (2014).
37 Lee, J., Lim, K.-H. & Kim, Y. S. Effects of Unusual Gate Current on the Electrical Properties of Oxide Thin-Film Transistors. Scientific reports 8, 13905 (2018).
38 Meyerbröker, N. & Zharnikov, M. Modification of nitrile-terminated biphenylthiol self-assembled monolayers by electron irradiation and related applications. Langmuir 28, 9583-9592 (2012).
39 Sarma, D., Santra, P. K., Mukherjee, S. & Nag, A. X-ray photoelectron spectroscopy: a unique tool to determine the internal heterostructure of nanoparticles. Chemistry of Materials 25, 1222-1232 (2013).
40 Digilov, R. Charge-induced modification of contact angle: the secondary electrocapillary effect. Langmuir 16, 6719-6723 (2000).
41 Nijhuis, C. A., Reus, W. F. & Whitesides, G. M. Molecular rectification in metal− SAM− metal oxide− metal junctions. Journal of the American Chemical Society 131, 17814-17827 (2009).
42 Reus, W. F., Thuo, M. M., Shapiro, N. D., Nijhuis, C. A. & Whitesides, G. M. The SAM, not the electrodes, dominates charge transport in metal-monolayer//Ga2O3/gallium–indium eutectic junctions. ACS nano 6, 4806-4822 (2012).
43 Muthurasu, A. & Ganesh, V. Electrochemical characterization of Self-assembled Monolayers (SAMs) of silanes on indium tin oxide (ITO) electrodes–Tuning electron transfer behaviour across electrode–electrolyte interface. Journal of colloid and interface science 374, 241-249 (2012).
44 Advincula, M., Fan, X., Lemons, J. & Advincula, R. Surface modification of surface sol–gel derived titanium oxide films by self-assembled monolayers (SAMs) and non-specific protein adsorption studies. Colloids and Surfaces B: Biointerfaces 42, 29-43 (2005).
45 Hutchins, D. O. et al. Spin cast self-assembled monolayer field effect transistors. Organic Electronics 13, 464-468 (2012).
46 Hutchins, D. O. et al. Solid-state densification of spun-cast self-assembled monolayers for use in ultra-thin hybrid dielectrics. Applied surface science 261, 908-915 (2012).
47 Acton, O. et al. Spin‐Cast and Patterned Organophosphonate Self‐Assembled Monolayer Dielectrics on Metal‐Oxide‐Activated Si. Advanced Materials 23, 1899-1902 (2011).
48 Matei, D., Muzik, H., Gölzhäuser, A. & Turchanin, A. Structural investigation of 1, 1′-biphenyl-4-thiol self-assembled monolayers on Au (111) by scanning tunneling microscopy and low-energy electron diffraction. Langmuir 28, 13905-13911 (2012).
49 Arkles, B. Tailoring surfaces with silanes. Chemtech 7, 766-778 (1977).
50 Aswal, D., Lenfant, S., Guerin, D., Yakhmi, J. & Vuillaume, D. Self assembled monolayers on silicon for molecular electronics. Analytica chimica acta 568, 84-108 (2006).
51 Haensch, C., Hoeppener, S. & Schubert, U. S. Chemical modification of self-assembled silane based monolayers by surface reactions. Chemical Society Reviews 39, 2323-2334 (2010).
52 Lee, J. H., Park, J. W. & Lee, H. B. Cell adhesion and growth on polymer surfaces with hydroxyl groups prepared by water vapour plasma treatment. Biomaterials 12, 443-448 (1991).
53 Oh, S.-D. et al. Dispersing of Ag, Pd, and Pt–Ru alloy nanoparticles on single-walled carbon nanotubes by γ-irradiation. Materials Letters 59, 1121-1124 (2005).
54 Miyauchi, M. et al. Reversible wettability control of TiO2 surface by light irradiation. Surface Science 511, 401-407 (2002).
55 Kulkarni, S. A., Mirji, S., Mandale, A., Gupta, R. & Vijayamohanan, K. P. Growth kinetics and thermodynamic stability of octadecyltrichlorosilane self-assembled monolayer on Si (100) substrate. Materials Letters 59, 3890-3895 (2005).
56 Laibinis, P. E. & Whitesides, G. M. . omega.-Terminated alkanethiolate monolayers on surfaces of copper, silver, and gold have similar wettabilities. Journal of the American Chemical society 114, 1990-1995 (1992).
57 Graupe, M. et al. Self-assembled monolayers of CF3-terminated alkanethiols on gold. Colloids and Surfaces A: Physicochemical and Engineering Aspects 154, 239-244 (1999).
58 Valamehr, B. et al. Hydrophobic surfaces for enhanced differentiation of embryonic stem cell-derived embryoid bodies. Proceedings of the National Academy of Sciences 105, 14459-14464 (2008).
59 Flink, S., Van Veggel, F. C. & Reinhoudt, D. N. Functionalization of self‐assembled monolayers on glass and oxidized silicon wafers by surface reactions. Journal of Physical Organic Chemistry 14, 407-415 (2001).
60 Farzaneh, M., Kulinich, S. & Volat, C. Hydrophobicity of fluoroalkylsilane-and alkylsilane-grafted surfaces. Surf. Sci 573, 379-390 (2004).
61 Yan, X. et al. Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate. Journal of Physics D: Applied Physics 37, 907 (2004).
62 Zhang, L. et al. One-step fabrication of porous GaN crystal membrane and its application in energy storage. Scientific reports 7, 44063 (2017).
63 Tao, F., Sim, W. S., Xu, G. Q. & Qiao, M. H. Selective binding of the cyano group in acrylonitrile adsorption on Si (100)-2× 1. Journal of the American Chemical Society 123, 9397-9403 (2001).
64 Matsuoka, M. et al. X-Ray photoelectron spectroscopy and Raman spectroscopy studies on thin carbon nitride films deposited by reactive RF magnetron sputtering. World Journal of Nano Science and Engineering 2, 92 (2012).
65 Ronning, C. et al. Carbon nitride deposited using energetic species: a review on XPS studies. Physical Review B 58, 2207 (1998).
66 Tabbal, M. et al. XPS and FTIR analysis of nitrogen incorporation in CNx thin films. Surface and Coatings Technology 98, 1092-1096 (1998).
67 Taylor, C. E., Garvey, S. D. & Pemberton, J. E. Carbon contamination at silver surfaces: surface preparation procedures evaluated by Raman spectroscopy and X-ray photoelectron spectroscopy. Analytical Chemistry 68, 2401-2408 (1996).
68 Yu, H. et al. Alkali‐assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band Structures for efficient visible‐light‐driven hydrogen evolution. Advanced Materials 29, 1605148 (2017).
69 Li, Y. et al. Water soluble graphitic carbon nitride with tunable fluorescence for boosting broad-response photocatalysis. Applied Catalysis B: Environmental 225, 519-529 (2018).
70 Huang, Z. et al. In suit inducing electron-donating and electron-withdrawing groups in carbon nitride by one-step NH4Cl-assisted route: A strategy for high solar hydrogen production efficiency. Environment international 126, 289-297 (2019).
71 Kim, Y.-H. et al. Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films. Nature 489, 128 (2012).
72 Kim, W.-G. et al. High-pressure gas activation for amorphous indium-gallium-zinc-oxide thin-film transistors at 100° C. Scientific reports 6, 23039 (2016).
73 Naik, V. V., Crobu, M., Venkataraman, N. V. & Spencer, N. D. Multiple transmission-reflection IR spectroscopy shows that surface hydroxyls play only a minor role in alkylsilane monolayer formation on silica. The Journal of Physical Chemistry Letters 4, 2745-2751 (2013).
74 Hamoudi, H., Kao, P., Nefedov, A., Allara, D. L. & Zharnikov, M. X-ray spectroscopy characterization of self-assembled monolayers of nitrile-substituted oligo (phenylene ethynylene) s with variable chain length. Beilstein journal of nanotechnology 3, 12-24 (2012).
75 Campbell, I. et al. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Physical Review B 54, R14321 (1996).
76 Peor, N., Sfez, R. & Yitzchaik, S. Variable density effect of self-assembled polarizable monolayers on the electronic properties of silicon. Journal of the American Chemical Society 130, 4158-4165 (2008).
77 Sugimura, H., Hayashi, K., Saito, N., Nakagiri, N. & Takai, O. Surface potential microscopy for organized molecular systems. Applied surface science 188, 403-410 (2002).
78 Lange, I. et al. Zinc oxide modified with benzylphosphonic acids as transparent electrodes in regular and inverted organic solar cell structures. Applied Physics Letters 106, 32_31 (2015).
79 Campanelli, A. R., Domenicano, A., Ramondo, F. & Hargittai, I. Group electronegativities from benzene ring deformations: A quantum chemical study. The Journal of Physical Chemistry A 108, 4940-4948 (2004).
80 Wang, A., Kymissis, I., Bulovic, V. & Akinwande, A. I. Engineering density of semiconductor-dielectric interface states to modulate threshold voltage in OFETs. IEEE Transactions on Electron Devices 53, 9-13 (2005).
81 Possanner, S. K., Zojer, K., Pacher, P., Zojer, E. & Schürrer, F. Threshold Voltage Shifts in Organic Thin‐Film Transistors Due to Self‐Assembled Monolayers at the Dielectric Surface. Advanced functional materials 19, 958-967 (2009).
82 Simmons, J. Conduction in thin dielectric films. Journal of Physics D: Applied Physics 4, 613 (1971).
83 Beebe, J. M., Kim, B., Gadzuk, J. W., Frisbie, C. D. & Kushmerick, J. G. Transition from direct tunneling to field emission in metal-molecule-metal junctions. Physical review letters 97, 026801 (2006).
84 Beebe, J. M., Kim, B., Frisbie, C. D. & Kushmerick, J. G. Measuring relative barrier heights in molecular electronic junctions with transition voltage spectroscopy. Acs Nano 2, 827-832 (2008).
85 Wang, W., Lee, T. & Reed, M. A. Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Physical Review B 68, 035416 (2003).
86 Kim, M.-H., Choi, S.-Y., Jeon, S.-H., Lim, J.-H. & Choi, D.-K. Stability Behavior of Self-Aligned Coplanar a-IGZO Thin Film Transistors Fabricated by Deep Ultraviolet Irradiation. ECS Journal of Solid State Science and Technology 7, Q60-Q65 (2018).
87 Jeong, S.-K., Kim, M.-H., Lee, S.-Y., Seo, H. & Choi, D.-K. Dual active layer a-IGZO TFT via homogeneous conductive layer formation by photochemical H-doping. Nanoscale research letters 9, 619 (2014).
88 Kamiya, T., Nomura, K. & Hosono, H. Subgap states, doping and defect formation energies in amorphous oxide semiconductor a‐InGaZnO4 studied by density functional theory. physica status solidi (a) 207, 1698-1703 (2010).
89 de Meux, A. d. J., Pourtois, G., Genoe, J. & Heremans, P. Defects in Amorphous Semiconductors: The Case of Amorphous Indium Gallium Zinc Oxide. Physical Review Applied 9, 054039 (2018).
90 Yu, E. K.-H., Lai, P.-C. & Kanicki, J. Photoluminescence Study of Amorphous InGaZnO Thin-Film Transistors. IEEE Transactions on Electron Devices 65, 1258-1261 (2018).
91 Tiwari, N., Shieh, H.-P. D. & Liu, P.-T. Structural, optical, and photoluminescence study of ZnO/IGZO thin film for thin film transistor application. Materials Letters 151, 53-56 (2015).

無法下載圖示 全文公開日期 2024/08/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE