簡易檢索 / 詳目顯示

研究生: 林伯儒
Po-Ju Lin
論文名稱: 膜蒸餾之抗潤濕機制研究及其於廢水處理的應用
Study of anti-wetting mechanism of membrane distillation for treating dyeing wastewater
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 李振綱
Cheng-Kang Lee
劉志成
Jhy-Chern Liu
王大銘
Da-Ming Wang
童國倫
Kuo-Lun Tung
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 142
中文關鍵詞: 膜蒸餾潤濕染整廢水水膠擴散係數
外文關鍵詞: membrane distillation, wetting, dyeing wastewater, hydrogel, diffusion coefficient
相關次數: 點閱:347下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 膜蒸餾(Membrane Distillation)技術是一種能源使用較少的脫鹽技術(desalination),其原理是使用疏水性多孔膜材為屏障,將熱端的處理水(feed)與冷端的過濾水(permeat)分開,利用溫度梯度為驅動力,使熱端的水蒸氣通過疏水膜並於冷端冷凝而回收,可產生水質極佳的過濾水,是一種可利用餘熱的水處理技術,可作為廢水回收再利用的有效方式。染整程序是一種用水量相當大的工業製造程序,產生大量高溫、高污染量、高色度的廢水,由於染整廢水的水溫較高,是一種相當有潛力以膜蒸餾技術進行廢水回收再利用的對象之一,但在染整程序中所添加的化學物質,如染色均染劑、後處理加工藥劑等,都是容易使疏水膜污染或潤濕的界面活性物質,往往使染整廢水的表面張力下降至50dyne/cm以下,造成薄膜蒸餾系統的處理效能降低。
    本研究使用一種新且有效的方法進行疏水膜的阻隔處理,稱為複合水膠膜蒸餾系統(Hydrogel-covered membrane distillation, HcMD),藉由特殊的水膠結構設計並與疏水膜適當的結合,可以降低疏水膜的膜孔潤濕問題,並保有實現工業化需求的膜通量,方法是使用一種高含水率的水膠層,置於膜蒸餾系統之熱端,隔開疏水膜與處理水,利用水膠層中特殊的水膠高分子與水分子間的交互作用與網目(mesh size)的設計,使界面活性物質不易穿過水膠層,而避免疏水膜遭潤濕,使膜蒸餾系統可以處理含表面活性劑的廢水,除此之外,處理含油性物質的水樣也有同樣的保護效果。


    A novel approach was developed to suppress surfactant wetting during membrane distilling industrial wastewater. In this work, a thin layer of agarose hydrogel was attached to the surface of hydrophobic porous Teflon membrane called hydrogel-covered membrane distillation (HcMD). This composite membrane was tested against aqueous NaCl solution containing various surfactants to determine the effectiveness for preventing surfactant wetting. These surfactants included sodium dodecyl sulfonate (SDS), Tween20, and Tween85. The results showed that no wetting occurred during the 24 h period of membrane distillation against 10 mg/L of SDS or Tween20. On the other hand, surfactant still penetrated through the hydrogel when the concentration was above the critical micelle concentration (CMC) of the surfactant. Even so, the wetting occurred to a lower extent at a slower pace. In addition, no wetting was observed when testing against dyeing wastewater. A model to explain this phenomenon was proposed based on the entrapment of surfactant at the interface between water and hydrogel. Although the attachment of agarose hydrogel layer would reduce the flux to about 71% of the flux using bare membrane, this approach did make membrane distillation able to recover highly pure water from dyeing wastewater.

    中文摘要 i Abstract ii 致謝 iii 圖索引 ix 表索引 xiii 第一章 緒論 1 1.1. 研究背景 1 1.2. 研究目的 2 第二章 文獻回顧 3 2.1. 薄膜蒸餾(Membrane Distillation)技術介紹 3 2.1.1. 薄膜蒸餾技術簡介與發展歷程 3 2.1.2. 薄膜蒸餾技術之數學模式 18 2.1.3. 膜蒸餾膜材的發展 22 2.1.4. 奈米纖維之膜蒸餾膜材開發 30 2.2. 膜蒸餾技術應用於廢水處理介紹 36 2.2.1. 發展現況與問題點 36 2.2.2. 抗膜污染與抗膜潤濕技術 40 2.3. 水膠(Hydrogel)與擴散理論介紹 46 2.3.1. 水膠的分類與特性 46 2.3.2. 水膠中的網目計算 50 2.3.3. 水膠中的擴散理論 52 第三章 實驗藥品、設備與實驗方法 61 3.1. 實驗藥品與膜材 61 3.2. 實驗設備 64 3.3. 實驗方法 65 3.3.1. 膜蒸餾測試系統 65 3.3.2. 水膠層製備方法與含水率分析 67 3.3.3. 表面觀察與孔徑分析 67 3.3.4. 微胞(micelle)與廢水之粒徑分析 68 3.3.4. 擴散實驗 69 第四章 複合水膠膜蒸餾系統抗潤濕性研究 70 4.1. 界面活性劑對膜蒸餾系統操作的影響 70 4.2. 水膠層的抗潤濕性 73 4.3. 水膠層對MD系統操作的影響 76 4.4. 微胞形成對水膠層抗潤濕性的影響 80 4.4.1. 微胞與水膠層抗潤濕性的關聯 80 4.4.2. 微胞形成與膜潤濕性的機制分析 86 第五章 複合水膠膜蒸餾系統可操作性研究 88 5.1. 微胞與對膜通量的影響 88 5.2. 複合水膠膜蒸餾系統的操作回復性 95 第六章 水膠層抗潤濕性機制研究與廢水處理應用 100 6.1. 水膠層結構設計 100 6.2. 水膠層網目分析與計算 102 6.3. 微胞於水膠層中的擴散現象 105 6.4 複合水膠膜蒸餾應用於染整與含油廢水處理 111 第七章 結論 116 第八章 參考文獻 117 作者簡介 140

    [1] M. Shatat, S.B. Riffat, Water desalinatin technologies utilizing conventional and renewableenergy sources, Internatioal Journal of Low-Carbon Tchology 9 (2014) 1-19.
    [2] A. Criscuoli, M.C. Carnevale, E. Drioli, Evaluation of energy requirements in membrane distillation, Chemical Engineering and Processing 47 (2008) 1098-1105.
    [3] A. Criscuoli, M.C. Carnevale, E. Drioli, Energy requirements in membrane distillation: evaluation and opimazation, Desalination 200 (2006) 586-587.
    [4] H. Susanto, Towards practical implementations of membrane distillation, Chemical Engineering and Processing: Process Intensification 50 (2011) 139-150.
    [5] K.W. Lawson, D.R. Lloyd, Membrane distillation, Journal of Membrane Science 124 (1997) 1-25.
    [6] A.M. Alklaibi, N. Lior, Membrane-distillation desalination: status and potential, Desalination 171 (2004) 111-131.
    [7] M.S. El-Bourawi, Z. Ding, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process, Journal of Membrane Science 285 (2006) 4-29.
    [8] E. Curcio, E. Drioli, Membrane distillation and related operation-a review, Separation and Purification Reviews 34 (2005) 35-86.
    [9] M. Khayet, T. Matsuura, J.I. Mengual, M. Qtaishat, Design of novel direct contact membrane distillation membranes, Desalination 192 (2006) 105-111.
    [10] A. Burgoyne, M.M. Vahdati, Direct contact membrane distillation, Separation Science and Technology 35, 8 (2000) 1257-1284.
    [11] A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: A comprehensive review, Desalination 287 (2012) 2-18.
    [12] M. Gryta, J. Grzechulska-Damszel, A. Markowska, K. Karakulski, The influence of polypropylene degradation on the membrane wettability during membrane distillation, Journal of Membrane Science 326 (2009) 493-502.
    [13] C. Cabassud, D. Wirth, Membrane distillation for water desalination: how to chose an appropriate membrane?, Desalination 157 (2003) 307-314.
    [14] J. Woods, J. Pellegrino, J. Burch, Generalized guidance for considering pore-size distribution in membrane distillation, Journal of Membrane Science 368 (2011) 124-133.
    [15] L.M. Camacho, L. Dumee, J. Zhang, J.D. Li, M. Duke, J. Gomez, S. Gray, Advances in membrane distillation for water desalination and purification applications, Water 5 (2013) 94-196.
    [16] D. Winter, J. Koshchikowski, M. Wieghaus, Desalination using membrane distillation: Experimental studies on full scale spiral wound modules, Journal of Membrane Science 375 (2011) 104-112.
    [17] A.E. Jansen, J.W. Assink, J.H. Hanemaaijer, J. van Meddevoort, E. van Sonsbeek, Development and pilot testing of full-scale membrane distillation modules for deployment of waste heat, Desalination 323 (2013) 55-65.
    [18] A. Kullab, A. Martin, Membrane distillation and applications for water purification in thermal cogeneration plants, Separation and Purification Technology 76 (2011) 231-237.
    [19] B. Li, K.K. Sirkar, Noval membrane and device for direct contact membrane distillation-based desalination process, Ind. Eng. Chem. Res. 43 (2004) 5300-5309.
    [20] T.Y. Cath, V.D. Adams, A.E. Childress, Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement, Journal of Membrane Science 228 (2004) 5-16.
    [21] J. Zhang, J.D. Li, S. Gray, Effect of applied pressure on performance of PTFE membrane in DCMD, ournal of Membrane Science 369 (2011) 514-525.
    [22] R.G. Raluy, R. Schwantes, V.J. Subiela, B. Peñate, G. Melián, J.R. Betancort, Operational ecperience of a solar membrane distillation demonstration plant in Pozo Izquierdo-Gran Canaria Island (Spain), Desalination 290 (2012) 1-13.
    [23] E. Drioli, A. Ali, F. Macedonio, Membrane distillation: Recent development and perspectives, Desalination 356 (2015) 56-84.
    [24] P. Wang, T.S. Chung, Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring, Journal of Membrane Science 474 (2015) 39-56.
    [25] M. Khayet, Membranes and theoretical modeling of membrane distillation: A review, Advances in Colloid and Interface Science 164 (2011) 56-88.
    [26] J. Phattaranawik, R. Jiraratananon, A.G. Fane, Heat transport and membrane distillation coefficients in direct contact membrane distillation, Journal of Membrane Science 212 (2003) 177-193.
    [27] M. Qtaishat, T. Matsuura, B. Kruczek, M. Khayet, Heat and mass transfer analysis in direct contact membrane distillation, Desalination 219 (2008) 272-292.
    [28] L. Martínez-Díez, M.I. Vázquez-González, F.J. Florido-Díaz, Study of membrane distillation using channel spacers, Journal of Membrane Science 144 (1998) 45-56.
    [29] J. Phattaranawik, R. Jiraratananon, A.G. Fane, Effects of net-type spacers on heat and mass transfer in direct contact membrane distillation and comparision with ultrafiltrationstudies, Journal of Membrane Science 217 (2003) 193-206.
    [30] J. Phattaranawik, R. Jiraratananon, A.G. Fane, C. Halim, Mass flux enhancement using spacer filled channels in direct contact membrane distillation, Journal of Membrane Science 187 (2001) 193-201.
    [31] A.R. Da Costa, A.G. Fane, D.E. Wiley, Spacer characterization and pressure drop modeling in spacer-filled channels for ultrafiltration, Journal of Membrane Science 87 (1994) 79-98.
    [32] L. Martínez, J.M. Rodríguez-Maroto, Characterization of membrane distillation modules and analysis of mass flux enhancement by channel spacers, Journal of Membrane Science 274 (2006) 123-137.
    [33] M. Gryta, M. Tomaszewska, Heat transport in the membrane distillation process, Journal of Membrane Science 144 (1998) 211-222.
    [34] M. Shakaib, M. Ehtesham-ul Haq, I. Ahmed, R.M. Yunus, Modeling the effect of spacer orientation on heat transfer in membrane distillation, World Academy of Science, Engineering and Technology 72 2010.
    [35] S. Srisurichan, R. Jiraratananon, A.G. Fane, Mass transfer mechanisms and transport resistances in direct contact membrane distillation process, Journal of Membrane Science 277 (2006) 186-194.
    [36] 許振良、馬炳榮,微濾技術與應用,化學工業出版社,中國,2005
    [37] M. Sossna, M. Hollas, G. Schaper, T. Scheper, Structure development of asymmetric cellulose acetate microfiltration membranes prepared by a single-layer dry-casting method, Journal of membrane science 289 (2007) 7-14.
    [38] V.P. Kfare, A.R. Greengerg, W.B. Krantz, Vapor-induced phase separation-effect of the humid air exposure step on membrane morphology Part I. Insights from mathematical modeling, Journal of membrane science 258 (2005) 140-156.
    [39] H. Susanto, N. Stahra, M. Ulbricht, High performance polyethersulfone microfiltration membranes having high flux and stable hydrophilic property, Journal of membrane science 342(2009) 153-164.
    [40] B.J. Cha, J.M. Yang, Preparation of poly(vinylidene fluoride) hollow fiber membranes for microfiltration using modified TIPS process, Journal of membrane science 291(2007) 191-198.
    [41] J.A. Morehouse, D.L. Taylor, D.R. Lloyd, D.F. Lawler, B.D. Freeman, L.S. Worrel, The effect of uni-axial stretching on the roughness of microfiltration membranes, Journal of Membrane Science 280 (2006) 712–719.
    [42] http://www.kik-por.de
    [43] P.Y. Apela, etc, Surfactant-controlled etching of ion track nanopores and its practical applications in membrane technology, Radiation Measurements 43 (2008) S552–S559.
    [44] S. Adnan, M. Hoang, H. Wang, Z. Xie, Commercial PTFE membranes for membrane distillation application: Effect of microstructure and support material, Desalination 284 (2012) 297-308.
    [45] K.Y. Wang, T.S. Chung, M. Gryta, Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation, Chemical Engineering Science 63 (2008) 2587-2594.
    [46] J. Phattaranawik, R. Firaratananon, A.G. Fang, Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation, Journal of Membrane Science 215 (2003) 75-85.
    [47] R. Huo, Z. Gu, K. Zuo, G. Zhao, Preparation and properties of PVDF-fabric composite membrane for membrane distillation, Desalination 249 (2009) 910-913.
    [48] F. Edwie, M.M. Teoh, T.S. Chung, Effects of additives on dual-layer hydrophobic-hydrophilic PVDF hollow fiber membranes for membrane distillation and continuous performance, Chemical Engineering Science 68 (2012) 567-578.
    [49] P. Wang, M.M. Teoh, T.S. Chung, Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalination performance, WATER RESEARCH 45 (2011) 5489-5500.
    [50] M. Su, M.M. Teoh, K.Y. Wang, J. Su, T.S. Chung, Effect of inner-layer thermal conductivity on flux enhancement of dual-layer hollow fiber membranes in direct contact membrane distillation, Journal of Membrane Science 364 (2010) 278-289.
    [51] S. Bonyadi, T.S. Chung, Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic-hydrophobic hollow fiber membranes, Journal of Membrane Science 306 (2007) 134-146.
    [52] K.Y. Wang, S.W. Foo, T.S. Chung, Mixed matrix PVDF hollow fiber membranes with nanoscale pores for desalination through direct contact membrane distillation, Ind. Eng. Chem. Res. 48 (2009) 4474-4483.
    [53] M. Qtaishat, D. Rana, M. Khayet, T. Matsuura, Preparation and characterization of novel hydrophobic/hydrophilic polyetherimide composite membranes for desalination by direct contact membrane distillation, Journal of Membrane Science 327 (2009) 265-273.
    [54] M. Khayet, J.I. Mengual, T. Matsuura, Porous hydrophobic/hydrophilic composite membranes application in desalination using direct contact membrane distillation, Journal of Membrane Science 252 (2005) 101-113.
    [55] M. Qtaishat, M. Khayet, T. Matsuura, Guidelines for preparation of higher flux hydrophobic/hydrophilic composite membranes for membrane distillation, Journal of Membrane Science 329 (2009) 193-200.
    [56] M. Mahdi, A. Shirazi, A. Kargari, M. Tabatabaei, Evaluation of commercial PTFE membranes in desalination by direct contact membrane distillation, Chemical Engineering and Processing: Process Intensification 76 (2014) 16-25.
    [57] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, Petal effect: A superhydrophobic state with high adgesive force, Langmuir 24 (2008) 4114-4119.
    [58] Z.Cui, E. Drioli, Y.M. Lee, Recent progress in fluoropoltmers for membrane, Progress in Polymer Science 39 (2014) 164-198.
    [59] L.F. Dumée, S. Gray, M. Duke, K. Sears, J. Schütz, N. Finn, The role of membrane surface energy on direct contact membrane distillation performance, Desalination 323 (2013) 22-30.
    [60] N. Nuraje, W.S. Khan, Y.L. Lei, M. Ceylan, R. Asmatulu, Superhydrophobic electrospun nanofiber, Journal of Materials Chemistry A 1 (2013) 1929-1946.
    [61] R. Scheffler, Electrospun Teflon AF fibers for superhydrophobic membranes, Journal of Material Research 25 (2010) 1595-1600.
    [62] Y. Rane, A. Altecor, N.S. Bell, K. Lozano, Preparation of superhydrophobic Teflon® AF 1600 sub-micro fibers and yarns using the forcespinningtm technique, Fournal of Engineered Fibers and Fabrics 8 (2013) 88-95.
    [63] S. Wang, Y. Yang, Y. Zhang, X. Fei, C. Zhou, Y. Zhang, Y. Li, Q. Yang, Y. Song, Fabrication of larg-scale superhydrophobic composite films with enhanced tensile properties by multinozzle conveyor belt electrospinning, Journal Applied Polymer Science (2014) 39735.
    [64] http://www.elmarco.com/electrospinning/electrospinning-technology/
    [65] L.D. Tijing, J.S. Choi, S. Lee, S.H. Kim, H.K. Shon, Recent progress of membrane distillation using electrospun nanofibrous membrane, Journal of Membrane Science 453 (2014) 435-462.
    [66] M. Essalhi, M. Khayet, Self-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 1. Desalination by direct contact membrane distillation, Journal of Membrane Science 433 (2013) 167-179.
    [67] M. Essalhi, M. Khayet, Self-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 2. Theoretical analysis, polarization effects and thermal efficiency, Journal of Membrane Science 433 (2013) 180-191.
    [68] C. Feng, K.C. Khulbe, T. Matsuura, R. Gopal, S. Kaur, S. Ramakrishna, M. Khayet, Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane, Journal of Membrane Science 311 (2008) 1-6.
    [69] C. Feng, K.C. Khulbe, T. Matsuura, S. Tabe, A.F. Ismail, Preparation and characterization of electro-spun nanofiber membranes and their possible application in water treatment, Separation and Purification Technology 102 (2013) 118-135.
    [70] Y. Liao, R. Wang, M. Tian, C. Qiu, A.G. Fane, Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation, Journal of Membrane Science 425-426 (2013) 30-39.
    [71] J.A. Prince, G. Singh, D. Rana, T. Matsuura, V. Anbharasi, T.S. Shanmugasundaram, Preparation and characterization of highly hydrophobic poly(vinylidene fluoride) – Clay nanocomposite nanofiber membranes (PVDF-clay NNMs) for desalination using direct contact membrane distillation, Journal of Membrane Science 397-398 (2012) 80-86.
    [72] Y. Liao, R. Wang, A.G. Fane, Engineering superhydrophobic eurface on poly(vinylidene fluoride) nanofiber membranes for direct contact membrane distillation, Journal of Membrane Science 440 (2013) 77-87.
    [73] B.S. Lalia, E.Guillen-Burrieza, H.A. Arafat, R. Hashaikeh, Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation, Journal of Membrane Science 428 (2013) 104-115.
    [74] S.U. Patel, G.M. Manzo, S.U. Patel, P.S. Kulkarni, G.G. Chase, Permeability of electrospun superhydrophobic nanofiber mats, Journal of Nanotechnology 2012 1-7.
    [75] M. Ma, R.M. Hill, J.L. Lowery, S.V. Fridrikh, G.C. Rutledge, Electspun poly(styrene-block-dimethylsilosane) block copolymer fibers exhibiting superhydrophobicity, Langmuir 21 (2005) 5549-5554.
    [76] J.A. Prince, V. Anbharasi, T.S. Shanmugasundaram, G. Singh, Preparation and characterization of novel triple layer hydrophilic-hydrophobic composite membrane for desalination using air gap membrane distillation, Separation and Purification Technology 118 (2013) 598-603.
    [77] H. Maab, L. Francis, A. Al-saadi, C. Aubry, N. Ghaffour, G. Amy, S.P. Nunes, Synthesis and fabrication of nanostructured hydrophobic polyazole membranes for low-energy water recovery, Journal of Membrane Science 423-424 (2012) 11-19.
    [78] Z.Q. Dong, X.H. Ma, Z.L. Xu, W.T. You, F.B. Li, Superhydrophobic PVDF-PTFE electrospun nanofibrous membranes for desalination by vacuum membrane distillation, Desalination 347 (2014) 175-183.
    [79] T. Zhou, Y. Yao, R. Xiang, Y. Wu, Formation and characterization of polytetrafluoroethylene nanofiber membranes for vacuum membrane distillation, Journal of Membrane Science 453 (2014) 402-408.
    [80] L.D. Tijing, Y.C. Woo, Md Abu Hasan Johir, J.S. Choi, H.K. Shon, A novel dual-layer bicomponent electrospun nanofibrous membrane for desalination by direct contact membrane distillation, Chemical Engineering Journal 256 (2014) 155-159.
    [81] H.Y. Wu, R. Wang, R.W. Field, Direct contact membrane distillation: An experimental and analytical investigation of the effect of membrane thickness upon transmembrane flux, Journal of Membrane Science 470 (2014) 257-265.
    [82] L.D. Tijing, Y.C. Woo, J.S. Choi, S. Lee, S.H. Kim, H.K. Shon, Fouling and its control in membrane distillation-A review, Journal of Membrane Science 475 (2015) 215-244.
    [83] D.M. Warsinger, J. Swaminathan, E. Guillen-Burrieza, H.A. Arafat, J.H. Lienhard V, Scaling and fouling in membrane distillation for desalination applications: A review, Desalination 356 (2015) 294-313.
    [84] A.C.M. Franken, J.A.M. Nolten, M.H.V. Mulder, D. Bargeman, C.A. Smolders, Wetting criteria for the applicability of membrane distillation, Journal of Membrane Science 33 (1987) 315-328.
    [85] R.B. Saffarani, B. Mansoor, R. Thomas, H.A. Arafat, Effect of temperature-dependent microstructure evolution on pore wetting in PTFE membranes under membrane distillation conditions, Journal of Membrane Science 429 (2013) 282-294.
    [86] M. Gryta, J. Grezchulska-Damszel, A. Markowska, K. Karakulski, The influence of polypropylene degradation on the membrane wettablity during membrane distillation, Journal of Membrane Science 326 (2009) 493-502.
    [87] E. Guillen-Burrieza, R. Thomas, B. Mansoor, D. Jonson, N. Hilal, Effect of dry-out on the fouling of PVDF and PTFE membranes under conditions simulating intermittent seawater membrane distillation (SWMD), Journal of Membrane Science 438 (2013) 126-139.
    [88] J.W. Chew, W.B. Krantz, A.G. Fane, Effect of a macromolecular- or bio-fouling layer on membrane distillation, Journal of Membrane Science 456 (2014) 66-76.
    [89] S. Goh, Q. Zhang, J. Zhang, D. McDougald, W.B. Krantz, Y. Liu, A.G. Fang, Impact of a biofouling layer on the vapor pressure driving force and performance of a membrane distillation process, Journal of Membrane Science 438 (2013) 140-152.
    [90] G. Naidu, S. Jeong, S.J. Kim, I.S. Kim, S. Vigneswaran, Organic fouling behavior in direct membrane distillation, Desalination 347 (2014) 230-239.
    [91] M. Gryta, Long-term performance of membrane distillation process, Journal of Membrane Science 265 (2005) 153-159.
    [92] M. Gryta, Polyphosphates used for membrane scaling inhibition during water desalination by membrane distillation, Desalination 285 (2012) 170-176.
    [93] J. Ge, Y. Peng, Z. Li, P. Chen, S. Wang, Membrane fouling and wetting in a DCMD process for RO brine concentration, Desalination 344 (2014) 97-107.
    [94] A. Hausmann, P. Sanciolo, T. Vasiljevic, M. Weeks, K. Schroën, S. Gray, M. Duke, Fouling of dairy components on hydrophobic polytetrafluoroethylene (PTFE) membranes for membrane distillation, Journal of Membrane Science 442 (2013) 149-159.
    [95] A. Hausmann, P. Sanciolo, T. Vasijevic, M. Weeks, K. Schroën, Fouling mechanisms of dairy streams during membrane distillation, Journal of Membrane Science 441 (2013) 102-111.
    [96] J. Phattaranawik, A.G. Fane, Audrey C.S. Pasquier, W. Bing, A novel membrane bioreactor based on membrane distillation, Desalination 223 (2008) 386-395.
    [97] T.H. Khaing, J. Li, Y. Li, N. Wai, F.S. Wong, Feasibility study on petrochemical wastewater treatment and reuse using a novel submerged membrane distillation bioreactor, Separation and Purification Technology 74 (2010) 138-143.
    [98] V. Calabrò, E. Drioli, F. Matera, Membrane distillation in the textile wastewater, Desalination 83 (1991) 209-224.
    [99] F. Banat, A. Al-Asheh, M. Qtaishat, Treatment of waters colored with methylene blue dye by vacuum membrane distillation, Desalination 174 (2005) 87-96.
    [100] N.M. Mokhtar W.J. Lau, A.F. Ismail, The potential of membrane distillation in recovering water from hot dyeing solution, Journal of Water Process Engineering 2 (2014) 71-78.
    [101] A. Criscuoli, J. Zhong, A. Figoli, M.C. Carnevale, R. Huang, E. Drioli, Treatment of dye solutions by vacuum membrane distillation, Water Research 42 (2008) 5031-5037.
    [102] S. Mozia, A.W. Morawski, M. Yoyoda, T. Tsumura, Integration of photocatalysis and membrane distillation for removal of mono- and poly-azo dyes from water, Desalination 250 (2010) 666-672.
    [103] B.H. Diya’uddeen, W.M.A.Wan Daud, A.R. Abdul Aziz, Treatment technologies for petroleum refinery effluents: A review, Process Safety and Environmental Protection 89 (2011) 95-105.
    [104] F.R. Ahmadun, A. Pendashteh, L.C. Abdullah, D.R. Awang Biak, S.S. Madaeni, Z.Z. Abidin, Review of technologies for oil and gas produced water treatment, Journal of Hazardous Materials 170 (2009) 530-551.
    [105] T. Yuan, J. Meng, T. Hao, Y. Zhang, M. Xu, Polysulfone membranes clicked with poly (ethylene glycol) of high density and uniformity for oil/water emulsion purification: Effects of tethered hydrogel microstructure, Journal of Membrane Science 470 (2014) 112-124.
    [106] A.C. Sagle, H. Ju, B.D. Freeman, M.M. Sharma, PEG-based hydrogel membrane coatings, Polymer 50 (2009) 756-766.
    [107] H. Kiai, M.C. García-payo, A. Hafidi, M. Mhayet, Application of membrane distillation technology in the treatment of table olive wastewaters for phenolic compounds concentration and high quality water production, Chemical Engineering and Processing 86 (2014) 153-161.
    [108] M. Gryta, Wastewater treatment by membrane distillation, Desalination 198 (2006) 67-73.
    [109] A. El-Abbassi, A. Hafidi, M. Khayet, M.C. García-Payo, Integrated direct contact membrane distillation for olive mill wastewater treatment, Desalination 323 (2013) 31-38.
    [110] M. Gryta, Fouling in direct contact membrane distillation, Journal of Membrane Science 325 (2008) 383-394.
    [111] F. Macedonio, A. Ali, T. Poerio, E. El-Sayed, E. Drioli, M.Abdel-Jawad, Direct contact membrane distillation for treatment of oilfield produced water, Separation and Purification Technology 126 (2014) 69-81.
    [112] S. Goh, J. Zhang, Y. Liu, A.G. Fane, Fouling and wetting in membrane distillation (MD) and MD-bioreactor (MDBR) for wastewater reclamation, Desalination 323 (2013) 39-47.
    [113] A. Alkhudhiri, N. Darwish, N. Hilal, Produced water treatment: Application of air gap membrane distillation, Desalination 309 (2013) 46-51.
    [114] J.H. Lee, H.B. Lee, J.D. Andrade, Blood compatibility of polyethylene oxide surfaces, Prog. Polym. Sci. 20 (1995) 1043-1079.
    [115] H.J. Bryan, D. McCloskey, A.C. Sagle, V.A. Kusuma, B. Freemanm, Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials, Journal of Membrane Science 330 (2009) 180-188.
    [116] A. Roosjen, H.C. van der Mei, H.J. Busscher, W. Norde, Microbial adhesion to poly(ethylene oxide) brushes: influence of polymer chain length and temperature, Langmuir 20 (2004) 10949-10955.
    [117] T. Gilányi, I. Varga, M. Gilányi, R. Mészáros, Adsorption of poly(ethylene oxide) at the air/water interface: A dynamic and static surface tension study, Journal of Colloid and Interface Science 301 (2006) 428-435.
    [118] P. Krsko, J.B. Kaplan, M. Libera, Spatially controlled bacterial adhesion using surface-patterned poly(eyjylene glycol) hydrohel, Acta Biomaterialia 5 (2009) 589-596.
    [119] H. Susanto, M. Ulbricht, Photografted thin polymer hydrogel layer on PES ultrafiltration membranes: characterization, stability, and influence on separation performance, Langmuir 23 (2007) 7818-7830.
    [120] F. Liu, Y.Y. Xu, B.K. Zhu, F. Zhang, L.P. Zhu, Preparation of hydrophilic and fouling resistant poly(vinylidene fluoride) hollow fiber membranes, Journal of Membrane Science 345 (2009) 331-339.
    [121] J. Lei, M. Ulbricht, Macroinitialtor-mediated photoreactive coating of membrane surfaces with antifouling hydrogel layers, Journal of Membrane Science 455 (2014) 207-218.
    [122] Y.H. La, B.D. McCloskey, R. Sooriyakumaran, A. Vora, B. Freeman, M. Massar, J. Hedrick, A. Nelson, R. Allen, Bifunctional hydrogel coatings for water purification membranes: improved fouling resistance and antimicrobial activity, Journal of Membrane Science 372 (2011) 285-291.
    [123] T. Ekblad, G. Bergström, T. Ederth, S.L Conlan, R. Mutton, A.S. Clare, S. Wang, Y. Liu, Q. Zhao, F. D’Souza, G.T. Donnelly, P.R. Willemsen, M.E. Pettitt, M.E. Callow, J.A. Callow, B. Liedberg, Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments, Biomacromolecules 9 (2008) 2775-2783.
    [124] P. Lundberg, A. Bruin, J.W. Klijnstra, A.M. Nyström, M. Johansson, M. Malkoch, A. Hult, Poly(ethylene glycol)-based thiol-ene hydrogel coatings-curing chemistry, aqueous stability, and potential marine antifouling applications, Applied Materials and Interface 2 (2010) 903-912.
    [125] L. Xue, X. Lu, H. Wei, P. Long, J. Xu, Y. Zheng, Bio-inspired self-cleaning PAAS hydrogel released coating for marine antifouling, Journal of Colloid and Interface Science 421 (2014) 178-183.
    [126] L. Xie, F. Hong, C. He, C. Ma, J. Liu, G. Zhang, C. Wu, Coatings with a self-generating hydrogel surface for antifouling, Polymer 52 (2011) 3738-3744.
    [127] F. Liu, N.A. Hashim, Y. Liu, M.R. Moghareh Abed, K. Li, Progress in the production and modification of PVDF membranes, Journal of Membrane Science 375 (2011) 1-27.
    [128] C.D. Kang, Y.M. Cao, Application and modification of poly(vinylidene fluoride) (PVDF) membranes – A review, Journal of Membrane Science 463 (2014) 145-165.
    [129] J. Mansouri, A.G. Fane, Osmotic distillation of oily feeds, Journal of Membrane Science 153 (1999) 103-120.
    [130] A. Chanachai, K. Meksup, R. Jiraratananon, Coating of hydrophobic hollow fiber PVDF membrane with chitosan for protection against wetting and flavor loss in osmotic distillation process, Separation and Purification Technology 72 (2010) 217-224.
    [131] J.B. Xu, J.P. Bartley, R.A. Johnson, Preparation and characterization of alginate–carrageenan hydrogel films crosslinked using a water-soluble carbodiimide (WSC), Journal of Membrane Science 218 (2003) 131–146.
    [132] J.B. Xu, S. Lange, J.P. Bartley, R.A. Johnson, Alginate-coated microporous PTFE membranes for use in the osmotic distillation of oily feed, Journal of Membrane Science 240 (2004) 81-89.
    [133] J.B. Xu, D.A. Spittler, J.P. Bartley, R.A. Johnson, Alginic acid-silica hydrogel coatings for the protection of osmotic distillation membranes against wet-out by surface-active agents, Journal of Membrane Science 260 (2005) 19-25.
    [134] G.Z. Zuo, R. Wang, Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application, Journal of Membrane Science 447 (2013) 26-35.
    [135] P. Peng, A.G. Fane, X. Li, Desalination by membrane distillation adopting a hydrophilic membrane, Desalination 173 (2005) 45-54.
    [136] B. Li, K.K. Sirkar, Novel membrane and device for vacuum membrane distillation-based desalination process, Journal of Membrane Science 257 (2005) 60-75.
    [137] L. Song, Z. Ma, X. Liao, P.B. Kosaraju, J.R. Irish, K.K. Sirkar, Pilot plant studies of novel membranes and devices for direct contact membrane distillation-based desalination, Journal of Membrane Science 323 (2008) 257-270.
    [138] D. Singh, K.K, Sirkar, Desalination of brine and produced water by direct contact membrane distillation at high temperatures and pressures, Journal of Membrane Science 389 (2012) 380-388.
    [139] F. Wang, J. Li, H. Zhu, H. Zhang, H. Tang, J. Chen, Y. Guo, Physical modification of polytetrafluoroethylene flat membrane by a simple heat setting process and membrane wetting remission in SGMD for Desalination, Desalination 354 (2014) 143-152.
    [140] S. Meng, Y. Ye, J. Mansouri, V. Chen, Fouling and crystallisation behavior of superhydrophobic nano-composite PVDF membranes in direct contact membrane distillation, Journal of Membrane Science 463 (2014) 102-112.
    [141] G. Chen, X. Yang, R. Wang, A.G. Fane, Performance enhancement and scaling control with gas bubbling in direct contact membrane distillation, Desalination 308 (2013) 47-55.
    [142] S.J. Buwalda, K.W.M. Boere, P.J. Dijkstra, J. Feijen, T. Vermonden, W. Hennink, Hydrogel in a historical perspective: from simple networks to smart materials, Journal of Controlled Release 190 (2014) 254-273.
    [143] F. Ganji, S. Vasheghani-Farahani, E. Vasheghani-Farahani, Theoretical description of hydrogel swelling: A review, Iranian Polymer Journal 19 (2010) 375-398.
    [144] C.J. Van Oss, M.L. Roberts, R.J. Good, M.K. Chaudhury, Determination of the apolar component of the surface tension of water by contact angle measurements on gels, Colloids and Surfaces 28 (1987) 369-373.
    [145] C.J. Van Oss, L. Ju, M.K. Chaudhury, R.J. Good, Estimation of the polar parameters of the surface tension of liquids by contact angle measurements on gels, Journal of Colloid and interface Science 128 (1989) 313-319.
    [146] H. Omidian, J.G. Rocca, K. Park, Advances in superporous hydrogels, Journal of Controlled Release 102 (2005) 3-12.
    [147] E.S. Dragan, Desigh and applications of interpenetrating polymer network hydrogels. A review, Chemical Engineering Journal 243 (2014) 572-590.
    [148] B. Jeong, S.W. Kim, Y.H. Bae, Thermosensitive sol-gel reversible hydrogels, Advanced Drug Delivery Reviews 64 (2012) 154-162.
    [149] F. Askari, S. Nafisi, H. Omidian, S.A. Hashemi, Synthesis and characterization of acrylic-based superabsorbents, Journal of Applied polymer Science 50 (1993) 1851-1855.
    [150] W.S. Dai, T.A. Barbari, Hydrogel membranes with mesh size asymmetry based on the gradient crosslinking of poly(vinyl alcohol), Journal of Membrane Science 156 (1999) 67-79.
    [151] A.A. Artyukhov, M.I. Shtilman, A.N. Kuskov, L.I. Pashkova, A.M. Tsatsakis, A.K. Rizos, Polyvinyl alcohol cross-linked macroporous polymeric hydrogels: Structure formation and regularity investigation, Journal of Membrane Science 357 (2011) 700-706.
    [152] J.S. Gonzalez, V.A. Alvarez, The effect of the annealing on the poly(vinyl alcohol) obtained by freezing-thawing, Thermochimica Acta 521 (2011) 184-190.
    [153] H.R. Oxley, P.H. Corkhill, J.H. Fitton, B.J. Tighe, Macroporous hydrogels for biomedical application: methodology and morphology, Biomaterials 14 (1993) 1064-1072.
    [154] E. Karpushkin, M. Dušková-Smrčková, M. Šlouf, K. Dušek, Rheology and porosity control of poly(2-hydroxyethyl methacrylate) hydrogels, Polymer 54 (2013) 661-672.
    [155] O. Kulygin, M.S. Silverstein, Porous poly(2-hydroxyethyl methacrylate) hydrogels synthesized within high internal phase emulsions, Soft Matter 3 (2007) 1525-1529.
    [156] D.L. Elbert, Liquid-liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: A tutorial review, Acta Biomaterialia 7 (2011) 31-56.
    [157] J. Chen, K. Park, Synthesis and characterization of superporous hydrogel composites, Journal of Controlled Release 65 (2000) 73-82.
    [158] L.M. Hansen, D.J. Smith, D.H. Reneker, W. Kataphinan, Water absorption and mechanical properties of electrospun structured hydrogels, Journal of Applied Polymer Science 95 (2005) 427-434.
    [159] J. Sun, Y. Wang, S. Dou, C. Ruan, C. Hu, PEG derived hydrogel: A noval synthesis route under mild condition, Materials Letters 67 (2012) 215-218.
    [160] J. Ostrowska-Czubenko, M. Pieróg, M. Gierszewska-Drużyńska, Water state in chemically and physically crosslinked chitosan membranes, Journal of Applied Polymer Science 2013, DOI:10.1002/APP.39375.
    [161] T. Wang, S. Gunasekaran, State of water in chitosan-PVA hydrogel, Journal of Applied Polymer Science 101 (2006) 3227-3232.
    [162] N.A. Peppas, E.W. Merrill, Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks, Journal of Applied Polymer Science 21 (1977) 1763-1770.
    [163] N.A. Pappas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations, European Journal of Pharmaceutics and Biopharmaceutics 50 (2000) 27-46.
    [164] J. Lei, C. Mayer, V. Freger, M. Ulbricht, Synthesis and characterization of poly(ethylene glycol) methacrylate based hydrogel networks for anti-biofouling application, Macromolecular Materials and Engineering 298 (2013) 967-980.
    [165] S.T. Johnston, W.M. Deen, Hindered convection of proteins in agarose gels, Journal of Membrane Science 153 (1999) 271-279.
    [166] L. Masaro, X.X Zhu, Physical models of diffusion for polymer solutions, gels and solids, Progress in Polymer Science 24 (1999) 731-775.
    [167] B. Amsden, Solute diffusion in hydrogels. An examination of the retardation effect, Polymer Gels and Networks 6 (1998) 13-43.
    [168] G.M. Geise, D.R. Paul, B.D. Freeman, Fundamental water and salt transport properties of polymeric materials, Progress in Polymer Science 39 (2014) 1-42.
    [169] A. Pluen, P.A. Netti, R.K. Jain, D.A. Berk, Diffusion of macromolecules in agarose gels: Comparision of linear and globular configuration, Biophysical Journal 77 (1999) 542-552.
    [170] M.H.G.M. Penders, S. Nilsson, L. Piculell, B. Lindman, Clouding and diffusion of nonionic surfactants in agarose gels and solutions, Journal of Physical Chemistry 97 (1993) 11332-11338.
    [171] L. Johansson, U. Skantze, J.E. Löfroth, Diffusion and interaction in gels and solutions. 2. Experimental results on the obstruction effect, Macromolecules 24 (1991) 6019-6023.
    [172] L. Johansson, C. Elvingson, J.E. Löfroth, Diffusion and interaction in gels and solutions. 3. Theoretical results on the obstruction effect, Macromolecules 24 (1991) 6024-6029.
    [173] L. Johansson, P. Hedberg, J.E. Löfroth, Diffusion and interaction in gels and solutions. 5. Nonionic micellar systems, Journal of Physical Chemistry 97 (1993) 747-755.
    [174] L. Johansson, U. Skantze, J.E. Löfroth, Diffusion and interaction in gels and solutions. 6. Charged system, Journal of Physical Chemistry 97 (1993) 9817-9824.
    [175] B. Amsden, Solute diffusion within hydrogels. Mechanisms and models, Macromolecules 31 (1998) 8382-8395.
    [176] E.M. Johnson, D.A. Berk, R.K. Jain, W.M. Deen, Hindered diffusion in agarose gels: Test of effective medium model, Biophysical Journal 70 (1996) 1017-1026.
    [177] R.J. Phillips, Ahydrodynamic model for hindered diffusion of proteins and micelles in hydrogels, Biophysical Journal 79 (2000) 3350-3354.
    [178] T. Baba, R. Sakamoto, M. Shibukawa, K. Oguma, Solute retension and the states of water in polyethylene glycol and poly(vinyl alcohol) gels, Journal of Chromatography A, 1040 (2004) 45-51.
    [179] B. Hammouda, Temperature effect on the nanostructure of SDS micelles in water, Journal of Research of the National Institute of Standards and Technology 118 (2013) 151-167.
    [180] M.E. Mahmood, D.A.F. Al-Koofee, Effect of temperature changes on critical micelle concentration for Tween series surfactant, Global Journal of Science Frontier Research Chemistry, 13 (2013) 1-7.
    [181] A. Opoku, L.G. Tabil, B. Crerar, M.D. Shaw, Thermal conductivity and thermal diffusivity of timothy hay, Canadian Biosystems Engineering 48 (2006) 3.1-3.7.
    [182] W.J. Musnicki, N.W. Lloyd, R.J. Phillips, S.R. Dungan, Diffusion of sodium dodecyl sulfate micelles in agarose gels, Journal of Colloid and Interface Science 356 (2011) 165-175.
    [183] J. Liu, L. Li, Y. Cai, Immobilization of camptothecin with surfactant into hydrogel for controlled drug release, European Polymer Journal 42 (2006) 1676-1774.
    [184] X. Zhang, N. Hirota, T. Narita, J.P. Gong, Y. Osada, K. Chen, Investigation of molecular diffusion in hydrogel by electronic speckle pattern interferometry, Journal of Physical Chemistry B 103 (1999) 6069-6074.
    [185] J. Liu, L. Li, SDS-aided immobilization and controlled release of camptothecin from agarose hydrogel, European Journal of Pharmaceutical Science 25 (2005) 237-244.
    [186] J. Liu, L. Li, Diffusion of camptothecin immobilized cationic surfactant into agarose hydrogel containing anionic carrageenan, Journal of Biomedical Materials Research Part A DOI 10.1002.
    [187] D.D. Kong, T. F. Kosar, S.R. Dunngan, R.J. Phillips, Diffusion of proteins and nonionic micelles in agarose gels by holographic interferometry, AIChE J 43 (1997) 25-32.
    [188] N. Nishinari, H. Zhang, Recent advances in the understanding of heat set gelling polysaccharides, Trends in Food Science & Technology 15 (2004) 305-312.
    [189] T. Tada, T. Matsumoto, T. Masuda, Dynamic viscoelasticity and small-angle X-ray scattering studies on the gelation mechanism and network structure of curdlan gels, Carbohydrate Polymers 39 (1999) 53-59.
    [190] H. Zhang, K. Nishinari, M.artin A.K. Williams, T.J. Foster, I.T. Norton, A molecular description of the gelation mechanism of curdlan, International Journal of Biological Macromolecules 30 (2002) 7-16.
    [191] R. Naim, I. Levitsky, V. Gitis, Surfactant cleaning of UF membranes fouled by protein, Separation and Purification Technology 94 (2012) 39-43.
    [192] Y. Sekine, T.I. Fukazawa, Structural changes of water in a hydrogel during dehydration, The Journal of Chemical Physic 130 (2009) 1-7.
    [193] T. Funami, M. Funami, H. Yada, Y. Nakao, Rheological and thermal studies on gelling characteristics of curdlan, Fooe Hydrocolloids 13 (1999) 317-324.
    [194] M. Yoshikawa, T. Yoshioka, J. Fujime, A. Murakami, Pervaporation separation of MeOH/MTBE through agarose membranes, Journal of Membrane Science 178 (2000) 75-78.
    [195] Y. Fujita, M. Yoshikawa, Vapor permeation of aqueous ethanol mixtures through agarose membranes, Journal of Membrane Science 459 (2014) 114-121.
    [196] N. Pernodet, M. Maaloum, B. Tinland, Pore size of agarose gels by atomic force microscopy, Electrophoresis 18 (1997) 55-58.
    [197] M. Maaloum, N. Pernodet, B. Tinland, Agarose gel structure using atomic force microscopy: Gel concentration and ionic strength effects, Electrophoresis 19 (1998) 1606-1610.
    [198] M. Khayet, T. Matsuura, Membrane Distillation: Principles and Application, 2011, Elsevier.
    [199] M. Naous, J.A. Molina-Bolívar, C.C. Ruiz, Micelle size modulation and phase behavior in MEGA-10/Triton X-100 mixtures, Thermochimica Acta 598 (2014) 68-76.
    [200] F. Luschtinetz, C. Dosche, Determination of micelle diffusion coefficients with fluorescence correlation spectroscopy (FCS), Journal of Colloid and Interface Science 338 (2009) 312-315.
    [201] S. Liang, J. Xu, L. Weng, H. Dai, X. Zhang, L. Zhang, Protein diffusion in agarose hydrogel in situ measured by improved refractive index method, Journal of Controlled Release 115 (2006) 189-196.
    [202] G.M. Cruise, D.S. Scharp, J.A. Hubbell, Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels, Biomaterials 19 (1998) 1287-1294.
    [203] S. Zhang, P. Wang, X. Fu, T.S. Chung, Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD), WATER RESEARCH 52 (2014) 112-121.
    [204] K.L. Hickenbottom, N.T. Hancock, N.R. Hutchings, E.W. Appleton, E.G. Beaudry, O. Xu, T.Y. Cath, Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operation, Desalination 312 (2013) 60-66.
    [205] P.H.H. Doung, T.S. Chung, Application of thin film composite membranes with forward osmosis technology for the separion of emulsified oil-water, Journal of Membrane Science 452 (2014) 117-126.
    [206] A. El-Abbassi, M. Khayet, H. Kiai, A. Hafidi, M.C. García-Payo, Treatment of crude olive mill wastewaters by osmotic distillation and osmotic membrane distillation, Separation and Purification Technology 104 (2013) 327-332.

    無法下載圖示 全文公開日期 2020/07/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE