簡易檢索 / 詳目顯示

研究生: 詹益昇
I-Sheng Chan
論文名稱: IEEE 802.16e系統中非即時訊務之動態電能管理機制設計
A Dynamic Energy Management Mechanism for Non-Real-Time Traffic in the IEEE 802.16e Systems
指導教授: 陳金蓮
Jean-Lien C. Wu
口試委員: 陳彥文
none
馮輝文
none
鄭瑞光
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 57
中文關鍵詞: 休眠模式非即時訊務
外文關鍵詞: TCP, Non-Real Time Traffic
相關次數: 點閱:149下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在支援終端用戶行動能力的IEEE 802.16e無線都會網路中,電池能量是行動節點(Mobile Station, MS)的重要資源,如何設計MS節能機制使其能有效延長連續工作時間是非常重要的議題。因此在IEEE 802.16e網路重負載(Heavy Load)的環境中針對非即時(Non-Real Time)訊務設計出有效率的節能機制,是本論文的研究主題。
      在本篇論文中,我們設計動態能量管理(Dynamic Energy Management, DEM)機制,本動態能量管理機制除了可以讓基地台(Base Station, BS)或MS較容易掌握提出休眠之時機外,亦可降低MS頻繁的狀態切換進而達到節能的效果。我們利用封包聚集的概念設計排程方法,考慮網路傳輸控制協定(Transmission Control Protocol, TCP)的傳輸特性並改善IEEE 802.16e標準規範中針對非即時訊務所定義休眠類別一(Class 1機制)之休眠方式。接著我們利用MS估測伺服器壅塞視窗大小(Congestion Window Size)以及BS所計算出排程時間相關參數,由BS給予MS適當的休眠參數。本論文以檔案傳輸協定(File Transfer Protocol, FTP)應用為例,並且只要是TCP傳輸方式之應用皆可套用我們提出之DEM機制。由模擬結果可以看到,吾人提出之DEM機制與Class 1機制比較後,針對不同的非即時訊務量,除了可以減少平均耗電量約16%~25%,同時也可減少狀態切換率63%~77%。


    摘要 I 目錄 II 圖 目 錄 III 表 目 錄 IV 第一章 簡介 1 1.1動機與目的 3 1.2 相關研究 4 1.3 論文架構 7 第二章 研究背景 8 2.1 系統架構 8 2.2 傳輸控制協定(TCP) 9 2.3 IEEE802.16e標準定義之實體層 11 2.3.1 調變技術 11 2.3.3無線通道模型 13 2.4 IEEE802.16e標準定義之MAC層 14 2.4.1 資料傳遞服務 14 2.4.2 休眠機制 15 第三章 動態休眠管理機制 19 3.1 一般節能機制的問題 19 3.2 能量管理之設計原理 21 3.3 DEM之架構 24 3.3.1 壅塞視窗倒數器 26 3.3.2 排程 30 3.3.3 休眠模式控制器 31 第四章 效能評估 36 4.1模擬環境與參數 36 4.2模擬結果與討論 41 4.2.1方案一(固定式用戶,MS提出休眠請求)之模擬結果 42 4.2.2方案二(移動式用戶,BS提出休眠請求)之模擬結果 45 第五章 結論 53 參考文獻 55

    [1] IEEE, “IEEE Standard for Local and Metropolitan Area Networks – Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” IEEE 802.16-2001, Apr. 2002.
    [2] IEEE, “IEEE Standard for Local and Metropolitan Area Networks Part16 : Air Interface for Fixed Broadband Wireless Access Systems,” IEEE Std. 802.16, Oct. 2004.
    [3] IEEE, “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1. 2006,” IEEE Std. 802.16-2006e, 28 Feb. 2006.
    [4] IEEE, “IEEE Standard for Local and Metropolitan Area Network, Part 11: Wireless LAN MAC and PHY specifications: MAC QoS Enhancements,” IEEE Std. 802.11e-2005, Sep. 2005.
    [5] C. E. Jones, K. M. Sivalingam, P. Agrawal and J. C. Chen, “A Survey of Energy Efficient Network Protocols for Wireless Networks,” ACM Wireless Networks, Vol. 7, Jul. 2001, pp. 343-358.
    [6] A. Klemm, C. Lindemann and M. Lohmann, “Traffic Modeling and Characterization for UMTS Networks,” Global Telecommunications Conference, Vol. 3, Nov. 25-29, 2001, San Antonio, Texas, USA, pp.1741-1746
    [7] T. Winter, U. Turke and M. Koonert, “A Generic Approach for Including Live Measurements and Traffic Forecasts in the Generation of Realistic Traffic Scenarios in Mobile Radio Networks,” ACM Wireless Networks, Oct. 4-6, 2004, pp. 83-86.
    [8] X. Yang and M. Venkatachalam, “Exploiting the MAC Layer Flexibility of WiMAX to Systematically Enhance TCP Performance,” in Proc. of IEEE Mobile WiMAX Symposium, Mar. 25-29, 2007, Orlando, FL, USA, pp. 60-65.
    [9] M. Kang and J. Jang, “Performance evaluation of IEEE 802.16d ARQ algorithms with NS-2 simulator,” in Proc. of 2006 Asia-Pacific Conference on Communication, Aug. 31-Sep. 2, 2006, Busan, Republic of Korea, pp. 1-5.
    [10] C. Samios and M. K. Vernon, “Modeling the Throughput of TCP Vegas,” in Proc. of the Joint International Conference on Measurement and Modeling of Computer Systems, Vol. 31, No. 1, Jun. 9-14, 2003, San Diego, CA, USA, pp. 71-81.
    [11] N. H. Lee and S. Bahk, “MAC Sleep Mode Control Considering Downlink Traffic Pattern and Mobility,” in Proc. of IEEE Vehicular Technology Conference, Vol. 3, May 30-31, 2005, Stockholm, Sweden, pp. 2076-2080.
    [12] J. Jang, K. Han, and S. Choi, “Adaptive Power Saving Strategies for IEEE 802.16e Mobile Broadband Wireless Access,” in Proc. of 2006 Asia-Pacific Conference on Communication, Aug. 31-Sep. 2, 2006, Busan, Republic of Korea, pp. 1-5.
    [13] S. Cho and Y. Kim, “Improving Power Savings by Using Adaptive Initial-Sleep Window in IEEE 802.16e,” in Proc. of IEEE Vehicular Technology Conference, Apr. 22-25, 2007, Dublin, Ireland, pp. 1321-1325.
    [14] S. Zhu and T. Wang, “Enhanced Power Efficient Sleep Mode Operation for IEEE
    802.16e Based WiMAX,” in Proc. of IEEE Mobile WiMAX Symposium, Mar. 25-29, 2007, Orlando, FL, USA, pp. 43-47.
    [15] F. Xu, W. Zhong and Z. Zhou, “A Novel Adaptive Energy Saving Mode in IEEE 802.16e System,” in Proc. of IEEE Military Communication Conference, Oct. 23-25, 2006, Washington, DC, USA, pp. 1-6.
    [16] Y. Xiao, “Energy Saving Mechanism in the IEEE 802.16e Wireless MAN,” IEEE Communication Letters, Vol. 9, No. 7, Jul. 2005, pp. 595-597.
    [17] Y. Zhang and M. Fujise, “Energy Management in the IEEE 802.16e MAC,” in Proc. of IEEE Communication Letters, Vol. 10, No. 4, Apr. 2006, pp. 311-313.
    [18] Y. Xiao, “Performance Analysis of an Energy Saving Mechanism in the IEEE 802.16e Wireless MAN,” in Proc. of IEEE Consumer Communication and Networking Processing, Vol. 1, Jan. 8-10 2006, Las Vegas, Nevada, USA, pp. 406-410.
    [19] J. B. Seo, S. Q. Lee, N. H. Park, H. W. Lee and C. H. Cho, “Performance Analysis of Sleep Mode Operation in IEEE 802.16e,” in Proc. of IEEE Vehicular Technology Conference, Vol. 2, Sep. 26-29 2004, Los Angeles, CA, pp. 1169-1173.
    [20] L. Kong and D. Tsang, “Performance Study of Power Saving Classes of Type I and II in IEEE 802.16e,” in Proc. of IEEE Local Computer Networks Conference, Tempa, Florida, Nov. 14-16, 2006, pp.20-27.
    [21] Y. Park and G. Hwang, “Performance Modeling and Analysis of the Sleep-Mode in IEEE 802.16e WMAN,” in Proc. of IEEE Vehicular Technology Conference, Apr. 22-25, 2007, Dublin, Ireland, pp. 2801-2806.
    [22] K. Han and S. Choi, “Performance Analysis of Sleep Mode Operation in IEEE 802.16e Mobile Broadband Wireless Access Systems,” in Proc. of IEEE Vehicular Technology Conference, Vol. 3, Apr. 7-10, 2006, Melbourne, Australia, pp. 1141-1145.
    [23] D. G. Jeong and W. S. Jeon, “Performance of Adaptive Sleep Period Control for Wireless Communications Systems,” IEEE Transactions on Wireless Communication, Vol. 5, no. 11, Nov. 2006, pp. 3012-3016.
    [24] G. Senarath, W. Tong, P. Zhu, H. Zhang, D. Steer, M. Naden, and D. Kitche, “Multihop System Evaluation Methodology: Traffic Model,” IEEE C802.16j-06/024r1, May 2006, http://ieee802.org/16/relay/.
    [25] G. Senarath, W. Tong, P. Zhu, H. Zhang, D. Steer, D. Yu, M. Naden, and D. Kitche, “Multi-hop Relay System Evaluation Methodology,” IEEE C802.16j-06/013r3, Feb. 2007, http://ieee802.org/16/relay/.
    [26] J. Sydir, “Harmonized Contribution on 802.16j(Mobile Multihop Relay) Usage Models,” IEEE C802.16j-06/15, Sep. 2006, http://ieee802.org/16/relay/
    [27] H. Fattan and C. Leung, “An Overview of Scheduling Algorithms in Wireless Multimedia Networks,” IEEE Wireless Communications, Vol. 9, No.5, Oct. 2005, pp. 76-83.
    [28] A. S. Tanenbaum, Computer Networks, Fourth Edition, 2003, Prentice Hall.
    [29] C. Eklund, R. B. Marks, K. L. Standwood and S. Wang, “IEEE Standard 802.16: a Technical Overview of the Wireless MAN Air Interface for Broadband Wireless Access,” IEEE Communications Magazine, Vol. 40, No. 6, Jun. 2002, pp. 98-107.
    [30] B. H. Kim and Y. Hur, “Application Traffic Model for WiMAX Simulation,” WiMAX Forum, Aug. 2006.

    QR CODE