簡易檢索 / 詳目顯示

研究生: 駱柏瑜
Bo-Yu Luo
論文名稱: 以內爾德-米德演算法發展之電力硬體迴路模擬
Power Hardware in the Loop Simulation Using Nelder-Mead Algorithm
指導教授: 連國龍
Kuo-Lung Lian
口試委員: 吳啟瑞
Chi-Jui Wu
黃維澤
Wei-Tzer Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 63
中文關鍵詞: 內爾德-米德演算法電力硬體迴路模擬理想變壓器模型即時模擬
外文關鍵詞: Nelder-Mead Algorithm, Power Hardware in the Loop, Ideal Transformer Model, Real-time Simulation
相關次數: 點閱:214下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著基於可再生能源的發電裝置(Renewable energy based gener-ators, REBG)連接於主電網的需求增加,電力硬體迴路(Power hardware in the loop, PHIL)辦演了一個不可或缺的角色。電力硬體迴路模擬是一種即時模擬架構,可比傳統的模擬達到更貼近實際情形,因此可以透過電力硬體迴路模擬準確的預測可再生能源發電裝置對電網造成的影響。然而在PHIL中,電壓電流訊號在即時模擬器與硬體間的傳輸和疊代的過程中需要一段時間的處理,因此在本文中除了會進行交流電網的PHIL設置外,還會將Nelder-Mead演算法帶入到PHIL的設置當中。


With the increasing demand for renewable energy based generator (REBGs) to
be connected to the main grid, Power-hardware-in-the-loop simulation has played
an indispensable role. PHIL simulation is a real-time simulation framework that can
simulate a much more realistic phenomenon than traditional simulation, so it can
accurately predict the impact of renewable energy power generation devices on the
grid.
However, in PHIL, the voltage and current signals need to be processed for a period
of time for data transmission via iteration between the real simulator and the
hardware. Therefore, in this paper, the Nelder-Mead algorithms are carried over to
speed up this process.

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Research Background and Motivation . . . . . . . . . . . . . . . . . . 1 1.2 Type of simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 PHIL Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 PHIL Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Voltage type of ITM . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Current type of ITM . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 System Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Phase-Locked-Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Voltage Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 Nelder-Mead Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1 The Denition of Nelder-Mead Algorithm . . . . . . . . . . . . . . . . 18 4.2 Simplied Nelder-Mead algorithm . . . . . . . . . . . . . . . . . . . . 21 4.2.1 Reection and Expansion . . . . . . . . . . . . . . . . . . . . 22 4.2.2 Contraction and Shrinking . . . . . . . . . . . . . . . . . . . . 23 5 PHIL Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1 PHIL Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1.1 Implementing Nelder-Mead algorithm in a PHIL . . . . . . . . 27 vi 5.2 Experiment Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.4 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 A Peripheral Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 A.1 Sensor Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 A.2 Protection Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A.3 Level Shift Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 A.4 Relationship of the three boards . . . . . . . . . . . . . . . . . . . . . 50 REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

[1] R. Stanev, K. Viglov, K. Nakov, and T. Asenov, A real time power hardware
in the loop test bed for power system stability studies, in 2020 12th Electrical
Engineering Faculty Conference (BulEF), 2020, pp. 15.
[2] L. Wang, Y. Shi, D. Soto, J. Langston, M. Bosworth, J. Hauer, and M. Steurer,
A recongurable megawatt-scale power hardware-in-the-loop simulation system
for virtual motors, in 2021 IEEE Electric Ship Technologies Symposium
(ESTS), 2021, pp. 15.
[3] G. De Carne, G. Buticchi, and M. Liserre, Current-type power hardware in the
loop (phil) evaluation for smart transformer application, in 2018 IEEE Inter-
national Conference on Industrial Electronics for Sustainable Energy Systems
(IESES), 2018, pp. 529533.
[4] S. Wang, Z. Xu, B. Li, and D. Xu, Stability evaluation of power hardwarein-
the-loop simulation for dc system, in 2018 IEEE International Power Elec-
tronics and Application Conference and Exposition (PEAC), 2018, pp. 15.
[5] W. Ren, M. Steurer, and T. L. Baldwin, Improve the stability and the accuracy
of power hardware-in-the-loop simulation by selecting appropriate interface
algorithms, IEEE Transactions on Industry Applications, vol. 44, no. 4, pp.
12861294, 2008.
[6] Z. Zhang, L. Fickert, and Y. Zhang, Power hardware-in-the-loop test for cyber
physical renewable energy infeed: Retroactive eects and an optimized power
hardware-in-the-loop interface algorithm, in 2016 17th International Scientic
Conference on Electric Power Engineering (EPE), 2016, pp. 16.
[7] W. Ren, M. Steurer, and S. Woodru, Applying controller and power
hardware-in-the-loop simulation in designing and prototyping apparatuses for
future all electric ship, in 2007 IEEE Electric Ship Technologies Symposium,
2007, pp. 443448.
51
[8] J. A. Nelder and R. Mead, A Simplex Method for Function Minimization,
The Computer Journal, vol. 7, no. 4, pp. 308313, 01 1965. [Online]. Available:
https://doi.org/10.1093/comjnl/7.4.308
[9] H. Zhang, A. A. Heidari, M. Wang, L. Zhang, H. Chen, and C. Li,
Orthogonal nelder-mead moth ame method for parameters identication
of photovoltaic modules, Energy Conversion and Management, vol. 211,
p. 112764, 2020. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0196890420303022
[10] L. Wang, R. Xu, and F. Yu, Genetic nelder-mead neural network
algorithm for fault parameter inversion using gps data, Geodesy and
Geodynamics, vol. 13, no. 4, pp. 386398, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1674984722000246
[11] S. Pei Ye, Y. Hua Liu, S. Chung Wang, and H. Yu Pai, A novel global
maximum power point tracking algorithm based on nelder-mead simplex
technique for complex partial shading conditions, Applied Energy, vol. 321,
p. 119380, 2022. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S030626192200722X
[12] I. Jarrraya, L. Degaa, N. Rizoug, M. H. Chabchoub, and H. Trabelsi, Comparison
study between hybrid nelder-mead particle swarm optimization and open
circuit voltageârecursive least square for the battery parameters estimation,
Journal of Energy Storage, vol. 50, p. 104424, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352152X22004479
[13] Z. Li and Y. Zhan, A revised stochastic nelder-mead algorithm for numerical
optimization, in 2014 4th IEEE International Conference on Information
Science and Technology, 2014, pp. 821824.
[14] F. Habbi, N. El Houda Gabour, M. Bounekhla, and E. G. Boudissa, Output
voltage control of synchronous generator using nelder âmead algorithm based
pi controller, in 2021 18th International Multi-Conference on Systems, Signals
Devices (SSD), 2021, pp. 365374.

無法下載圖示 全文公開日期 2032/08/18 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE