簡易檢索 / 詳目顯示

研究生: NGUYEN MINH KHA
NGUYEN - MINH KHA
論文名稱: Orientated Ag@SiO2 Core-shell Nanocubes as Dual-functional Plasmonic Substrates for Biomarker Detection
Orientated Ag@SiO2 Core-shell Nanocubes as Dual-functional Plasmonic Substrates for Biomarker Detection
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: Wei-Nien Su
Wei-Nien Su
Ching-Hsiang Chen
Ching-Hsiang Chen
Liang-Yih Chen
Liang-Yih Chen
Tse-Chuan Chou
Tse-Chuan Chou
Yu-Chuan Liu
Yu-Chuan Liu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 171
中文關鍵詞: SERSphotoluminescenceAg@SiO2 nanocubesultrathin shellflower-like aluminaplasmonic couplingedge-edge orientationstabilitydual functionalityRhodamine 6Gurinebiomarker detection.
外文關鍵詞: SERS, photoluminescence, Ag@SiO2 nanocubes, ultrathin shell, flower-like alumina, plasmonic coupling, edge-edge orientation, stability, dual functionality, Rhodamine 6G, urine, biomarker detection.
相關次數: 點閱:336下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


The progress in fundamental biological studies of disease has been revealing a variety of new biomarkers that are difficult to be detected by traditional diagnostic tools. Interestingly, plasmonics is an ultrasensitive optical technology applicable in medical diagnostics and biological imaging sensors. A dual-functional plasmonic substrate with a unique design that allows both the sensitive detection of photoluminescence (PL) via metal-enhanced photoluminescence (MEPL) and the specific Raman fingerprint via surface-enhanced Raman scattering (SERS) is highly desirable to improve accuracy and sensitivity in detection.
This dissertation describes the role of coupling agents, spacer effects, and importance characters of various platforms for the optimum bifunctional SERS-MEPL based on Ag@SiO2 core-shell nanocube(s) [NC(s)] for urinary biomarkers detection. In this work, the Ag NCs were synthesized by the polyol method and modified, firstly with different coupling agents, such as 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-aminopropyltrimethoxysilane (APTMS), and secondly with tetraethylorthosilicate (TEOS). The presence of coupling agents greatly modified the Ag NC cores and manipulated the thickness and uniformity of the silica shells. Ultrathin silica-coated Ag NCs (with a ~1.5 nm silica layer) found to have a SERS intensity 3 fold higher than synthesized Ag NCs. In comparison with MPTMS, it was found that APTMS modified Ag@SiO2 NCs improved significant SERS and MEPL enhancements. Moreover, a ‘dual functionality’ represented by the simultaneous strengthening of SERS and MEPL signals can be achieved by mixing Ag@SiO2 NCs, with a silica shell thickness of ~1.5 nm and ~4.4 nm. This approach allows both the Ag@SiO2 NCs SERS and MEPL sensitivities to be maintained at ~90% after 12 weeks of storage.
Additionally, it is known that interactions between substrate and plasmonic nanostructures can influence the performance of plasmonic biosensing. Therefore, in the final approach, a substrate characterized with low refractive index and roughness was first fabricated by creating flower-like alumina on etched Al foil (f-Al2O3/e-Al). The Ag@SiO2 NCs assemble in the edge-edge configuration when they were deposited on this substrate. It is to note that the surface roughness of f-Al2O3/e-Al provides a pathway for the coupling of incident light to surface plasmon. The Ag@SiO2/f-Al2O3/e-Al substrate exhibits a coupling efficiency of laser light sources into surface plasmon hotspots for both SERS and MEPL. Moreover, the shelf life of this substrate is significantly improved due to reduced oxygen diffusion rate by ultrathin silica spacer and flower-like Al2O3 dielectric layer. Creatinine (CR) and flavin adenine dinucleotide (FAD) are biomolecules present in human blood and urine. With the advanced label-free SERS and MEPL techniques, these biomarkers in urine are detected, and it allows cheap, non-invasive and yet sensitive analysis.
The approaches explored in this dissertation could be developed as a powerful encoding tool for high-throughput bio-analysis.

Abstracti Acknowledgementiii Table of Contentsv List of Figuresix List of Tablesxvii List of Acronymsxix Chapter 1. Introduction1 1.1 Overview about plasmonic technologies1 1.2 Statement of the problem6 1.3 Objective of the study9 1.4 Significance of the study10 1.5 Structure of the dissertation11 Chapter 2. Literature Review13 2.1 A brief overview of SERS and MEPL13 2.1.1 Light scattering and optical properties of metals13 2.1.2 Normal Raman and surface-enhanced Raman scattering17 2.1.3 Photoluminescence and metal-enhanced photoluminescence24 2.2 The major concerns related to SERS and MEPL enhancements29 2.2.1 Type of metal31 2.2.2 Size effects34 2.2.3 Shape effects35 2.2.4 Interacting objects, gaps, and coupled plasmon resonances36 2.3 The research on SERS-MEPL bifunctional mode37 2.3.1 Solutions for the integrated SERS and MEPL37 2.3.2 Applications of SERS and MEPL39 2.4 Controlling the fabrication of nanostructures for plasmonic applications42 2.4.1 General nanofabrication techniques42 2.4.2 Preparation of Ag nanostructures43 2.4.3 Surface coating for protection of nanostructures48 Chapter 3. Materials and Methods51 3.1 Materials51 3.2 Fabrication of the plasmonic substrates51 3.2.1 Synthesis of Ag NCs51 3.2.2 Synthesis of Ag@SiO2 core-shell NCs53 3.2.3 Fabrication of Ag@SiO2/f-Al2O3/e-Al and Ag@SiO2/Al2O3/Al substrates53 3.2.4 Preparation of artificial urine54 3.2.5 Preparation of SERS and MEPL measurements55 3.3 Characterization and measurements55 3.3.1 General characterization55 3.3.2 SERS and MEPL measurements56 3.3.3 Calculation enhancement factor of the substrate57 Chapter 4. SERS and MEPL of Ag@SiO2 Nanocubes with Ultrathin Silica Shells59 4.1 Introduction59 4.2 Results and discussion61 4.2.1 Synthesis of Ag NCs61 4.2.2 Ultra-coating silica shell for Ag NCs cores66 4.2.3 The SERS and MEPL of the Ag@SiO2 NCs vs. Ag NCs70 4.3 Summary78 Chapter 5. Sensitivity and Stability of Bifunctional SERS-MEPL from the Mixture of Ag@SiO2 Nanocubes81 5.1 Introduction81 5.2 Results and Discussion83 5.2.1 Characterization of the Ag NCs and Ag@SiO2 NCs83 5.2.2 Bifunctional SERS-MEPL activity of Ag@SiO2 NCs88 5.2.3 The stability for dual SERS-MEPL activity94 5.2.4 Direct label-free SERS-MEPL detection of the mixture of creatinine and flavin adenine dinucleotide97 5.3 Summary99 Chapter 6. A Plasmonic Coupling Substrate Based on Ag@SiO2/f-Al2O3/e-Al for Sensitive Detection of Biomarkers in Urine101 6.1 Introduction101 6.2 Results and discussion103 6.2.1 Fabrication of the substrates and their characterization103 6.2.2 SERS and MEPL activities of the substrates109 6.2.3 Urinary biomarkers detection115 6.3 Summary118 Chapter 7. Conclusion and Future Perspectives119 7.1 Conclusion119 7.2 Future perspectives122 References123

[1]C. D. Chin, V. Linder, S. K. Sia, Lab-on-a-chip devices for global health: Past studies and future opportunities, Lab on a Chip 2007, 7, 41.
[2]R. V. Milani, C. J. Lavie, Health care 2020: Reengineering health care delivery to combat chronic disease, The American Journal of Medicine 2015, 128, 337.
[3]A. S. Daar, H. Thorsteinsdottir, D. K. Martin, A. C. Smith, S. Nast, P. A. Singer, Top ten biotechnologies for improving health in developing countries, Nat. Genet. 2002, 32, 229.
[4]P. D. Howes, S. Rana, M. M. Stevens, Plasmonic nanomaterials for biodiagnostics, Chem. Soc. Rev. 2014, 43, 3835.
[5]P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, B. H. Weigl, Microfluidic diagnostic technologies for global public health, Nature 2006, 442, 412.
[6]E. P. Balogh, B. T. Miller, J. R. Ball, Improving diagnosis in health care, The National Academies Press, Washington, DC 2015.
[7]D. Mabey, R. W. Peeling, A. Ustianowski, M. D. Perkins, Tropical infectious diseases: Diagnostics for the developing world, Nat Rev Micro 2004, 2, 231.
[8]X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, Y. Sun, Sensitive optical biosensors for unlabeled targets: A review, Anal. Chim. Acta 2008, 620, 8.
[9]E. Ozbay, Plasmonics: Merging photonics and electronics at nanoscale dimensions, Science 2006, 311, 189.
[10]O. Tokel, F. Inci, U. Demirci, Advances in plasmonic technologies for point of care applications, Chem. Rev. 2014, 114, 5728.
[11]W. L. Barnes, A. Dereux, T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 2003, 424, 824.
[12]M. L. Brongersma, V. M. Shalaev, The case for plasmonics, Science 2010, 328, 440.
[13]V. M. Shalaev, Optical negative-index metamaterials, Nat Photon 2007, 1, 41.
[14]N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens, Science 2005, 308, 534.
[15]D. E. Chang, A. S. Sorensen, E. A. Demler, M. D. Lukin, A single-photon transistor using nanoscale surface plasmons, Nat Phys 2007, 3, 807.
[16]M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, C. A. Mirkin, Templated techniques for the synthesis and assembly of plasmonic nanostructures, Chem. Rev. 2011, 111, 3736.
[17]E. C. Le Ru, P. G. Etchegoin, Principles of surface enhanced Raman spectroscopy, Elsevier: Oxford, U.K. 2009.
[18]M. Fleischmann, P. J. Hendra, A. J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett. 1974, 26, 163.
[19]D. L. Jeanmaire, R. P. Van Duyne, Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, J. Electroanal. Chem. 1977, 84, 1.
[20]K. A. Willets, R. P. V. Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem. 2007, 58, 267.
[21]X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, S. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags, Nat. Biotechnol. 2008, 26, 83.
[22]R. A. Alvarez-Puebla, L. M. Liz-Marzán, SERS-based diagnosis and biodetection, Small 2010, 6, 604.
[23]Z. Q. Tian, B. Ren, D. Y. Wu, Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures, J. Phys. Chem. B 2002, 106, 9463.
[24]Z.-Q. Tian, B. Ren, J.-F. Li, Z.-L. Yang, Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy, Chem. Commun. 2007, 3514.
[25]K. Kalantar-Zadeh, J. Z. Ou, Biosensors based on two-dimensional MoS2, ACS Sensors 2015, 1, 5.
[26]X. He, K. Wang, Z. Cheng, In vivo near‐infrared fluorescence imaging of cancer with nanoparticle‐based probes, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2010, 2, 349.
[27]Y. Fu, J. Zhang, J. R. Lakowicz, Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods, JACS 2010, 132, 5540.
[28]Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures, Nature communications 2016, 7, 11283.
[29]T. H. Taminiau, F. Stefani, N. F. van Hulst, Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency, New Journal of Physics 2008, 10, 105005.
[30]R. Aroca, G. J. Kovacs, C. A. Jennings, R. O. Loutfy, P. S. Vincett, Fluorescence enhancement from Langmuir-Blodgett monolayers on silver island films, Langmuir 1988, 4, 518.
[31]S. T. Kochuveedu, D. H. Kim, Surface plasmon resonance mediated photoluminescence properties of nanostructured multicomponent fluorophore systems, Nanoscale 2014, 6, 4966.
[32]S. Lee, H. Chon, S. Y. Yoon, E. K. Lee, S. I. Chang, D. W. Lim, J. Choo, Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging, Nanoscale 2012, 4, 124.
[33]J. Yang, Z. Wang, S. Zong, H. Chen, R. Zhang, Y. Cui, Dual-mode tracking of tumor-cell-specific drug delivery using fluorescence and label-free SERS techniques, Biosens. Bioelectron. 2014, 51, 82.
[34]X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, Y. Xia, Chemical synthesis of novel plasmonic nanoparticles, Annu. Rev. Phys. Chem. 2009, 60, 167.
[35]X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, C. B. Murray, Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives, ACS Nano 2012, 6, 2804.
[36]J. R. Lakowicz, Plasmonics in biology and plasmon-controlled fluorescence, Plasmonics 2006, 1, 5.
[37]M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, Y. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications, Chem. Rev. 2011, 111, 3669.
[38]J. Homola, S. S. Yee, G. Gauglitz, Surface plasmon resonance sensors: Review, Sensors Actuators B: Chem. 1999, 54, 3.
[39]C. Ying, W. Chungang, M. Zhanfang, S. Zhongmin, Controllable colours and shapes of silver nanostructures based on pH: Application to surface-enhanced Raman scattering, Nanotechnology 2007, 18, 325602.
[40]J. An, B. Tang, X. Zheng, J. Zhou, F. Dong, S. Xu, Y. Wang, B. Zhao, W. Xu, Sculpturing effect of chloride ions in shape transformation from triangular to discal silver nanoplates, The Journal of Physical Chemistry C 2008, 112, 15176.
[41]Q. Zhang, J. Ge, T. Pham, J. Goebl, Y. Hu, Z. Lu, Y. Yin, Reconstruction of silver Nanoplates by UV irradiation: Tailored optical properties and enhanced stability, Angew. Chem. Int. Ed. 2009, 48, 3516.
[42]B. Tang, J. An, X. Zheng, S. Xu, D. Li, J. Zhou, B. Zhao, W. Xu, Silver nanodisks with tunable size by heat aging, The Journal of Physical Chemistry C 2008, 112, 18361.
[43]J. Zeng, S. Roberts, Y. Xia, Nanocrystal-based time–temperature indicators, Chemistry – A European Journal 2010, 16, 12559.
[44]A. Kunzmann, B. Andersson, T. Thurnherr, H. Krug, A. Scheynius, B. Fadeel, Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation, Biochimica et Biophysica Acta (BBA)-General Subjects 2011, 1810, 361.
[45]C. Xue, X. Chen, S. J. Hurst, C. A. Mirkin, Self-assembled monolayer mediated silica coating of silver triangular nanoprisms, Adv. Mater. 2007, 19, 4071.
[46]P. Du, Y. Cao, D. Li, Z. Liu, X. Kong, Z. Sun, Synthesis of thermally stable Ag@TiO2 core-shell nanoprisms and plasmon-enhanced optical properties for a P3HT thin film, RSC Advances 2013, 3, 6016.
[47]J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. WuDe, B. Ren, Z. L. Wang, Z. Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy, Nature 2010, 464, 392.
[48]Y. Yang, Q. Zhang, Z.-W. Fu, D. Qin, Transformation of Ag nanocubes into Ag–Au hollow nanostructures with enriched ag contents to improve SERS activity and chemical stability, ACS Applied Materials & Interfaces 2014, 6, 3750.
[49]Y. Yang, J. Liu, Z.-W. Fu, D. Qin, Galvanic replacement-free deposition of Au on Ag for core–shell nanocubes with enhanced chemical stability and SERS activity, JACS 2014, 136, 8153.
[50]B.-H. Lee, M.-S. Hsu, Y.-C. Hsu, C.-W. Lo, C.-L. Huang, A facile method to obtain highly stable silver nanoplate colloids with desired surface plasmon resonance wavelengths, The Journal of Physical Chemistry C 2010, 114, 6222.
[51]Jiang, Zeng, Yu, Thiol-frozen shape evolution of triangular silver nanoplates, Langmuir 2007, 23, 2218.
[52]H.-J. Wu, J. Henzie, W.-C. Lin, C. Rhodes, Z. Li, E. Sartorel, J. Thorner, P. Yang, J. T. Groves, Membrane-protein binding measured with solution-phase plasmonic nanocube sensors, Nat Meth 2012, 9, 1189.
[53]M. M. Shahjamali, M. Bosman, S. Cao, X. Huang, S. Saadat, E. Martinsson, D. Aili, Y. Y. Tay, B. Liedberg, S. C. J. Loo, H. Zhang, F. Boey, C. Xue, Gold coating of silver nanoprisms, Adv. Funct. Mater. 2012, 22, 849.
[54]J. Zeng, J. Tao, D. Su, Y. Zhu, D. Qin, Y. Xia, Selective sulfuration at the corner sites of a silver nanocrystal and its use in stabilization of the shape, Nano Lett. 2011, 11, 3010.
[55]G. Schneider, G. Decher, N. Nerambourg, R. Praho, M. H. V. Werts, M. Blanchard-Desce, Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes, Nano Lett. 2006, 6, 530.
[56]C. F. Bohren, D. R. Huffman, Absorption and scattering of light by small particles, John Wiley & Sons, 2008.
[57]D. A. Schultz, Plasmon resonant particles for biological detection, Curr. Opin. Biotechnol. 2003, 14, 13.
[58]X. Fan, W. Zheng, D. J. Singh, Light scattering and surface plasmons on small spherical particles, Light Sci Appl 2014, 3, e179.
[59]K. B. Mogensen, K. Kneipp, Size-dependent shifts of plasmon resonance in silver nanoparticle films using controlled dissolution: Monitoring the onset of surface screening effects, The Journal of Physical Chemistry C 2014, 118, 28075.
[60]B. Gao, G. Arya, A. R. Tao, Self-orienting nanocubes for the assembly of plasmonic nanojunctions, Nat Nano 2012, 7, 433.
[61]M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, N. J. Halas, Substrates matter: Influence of an adjacent dielectric on an individual plasmonic nanoparticle, Nano Lett. 2009, 9, 2188.
[62]N. Hooshmand, S. R. Panikkanvalappil, M. A. El-Sayed, Effects of the substrate refractive index, the exciting light propagation direction, and the relative cube orientation on the plasmonic coupling behavior of two silver nanocubes at different separations, The Journal of Physical Chemistry C 2016, 120, 20896.
[63]Y.-C. Liu, C.-C. Wang, C.-E. Tsai, Effects of electrolytes used in roughening gold substrates by oxidation–reduction cycles on surface-enhanced Raman scattering, Electrochem. Commun. 2005, 7, 1345.
[64]Y.-C. Liu, B.-J. Hwang, W.-J. Jian, Effect of preparation conditions for roughening gold substrate by oxidation–reduction cycle on the surface-enhanced Raman spectroscopy of polypyrrole, Mater. Chem. Phys. 2002, 73, 129.
[65]C.-C. Wang, Surfaced-Enhanced Raman scattering-active substrates prepared through a combination of argon plasma and electrochemical techniques, The Journal of Physical Chemistry C 2008, 112, 5573.
[66]Z. Wang, H. Wu, C. Wang, S. Xu, Y. Cui, Gold aggregates- and quantum dots- embedded nanospheres: Switchable dual-mode image probes for living cells, J. Mater. Chem. 2011, 21, 4307.
[67]K. Kim, H. B. Lee, J.-Y. Choi, K. S. Shin, Silver-coated dye-embedded silica beads: A core material of dual tagging sensors based on fluorescence and Raman scattering, ACS Applied Materials & Interfaces 2011, 3, 324.
[68]A. Pallaoro, G. B. Braun, N. O. Reich, M. Moskovits, Mapping local pH in live cells using encapsulated fluorescent SERS nanotags, Small 2010, 6, 618.
[69]C. E. Barnett, Some applications of wavelength turbidimetry in the infrared, The Journal of Physical Chemistry 1942, 46, 69.
[70]W. Demtröder, Laser Raman spectroscopy, in Laser spectroscopy: Basic concepts and instrumentation, Springer Berlin Heidelberg, Berlin, Heidelberg 1996, 489.
[71]D. Pines, Collective energy losses in solids, Rev. Mod. Phys. 1956, 28, 184.
[72]S. A. Maier, Plasmonics: Fundamentals and applications, Springer US, 2010.
[73]A. Abbas, M. J. Linman, Q. Cheng, New trends in instrumental design for surface plasmon resonance-based biosensors, Biosens. Bioelectron. 2011, 26, 1815.
[74]X. D. Hoa, A. G. Kirk, M. Tabrizian, Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress, Biosens. Bioelectron. 2007, 23, 151.
[75]A. J. Haes, R. P. Van Duyne, A unified view of propagating and localized surface plasmon resonance biosensors, Anal. Bioanal. Chem. 2004, 379, 920.
[76]E. Hutter, J. H. Fendler, Exploitation of localized surface plasmon resonance, Adv. Mater. 2004, 16, 1685.
[77]K. M. Mayer, J. H. Hafner, Localized surface plasmon resonance sensors, Chem. Rev. 2011, 111, 3828.
[78]J. B. Jackson, N. J. Halas, Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates, Proceedings of the National Academy of Sciences 2004, 101, 17930.
[79]P. Johansson, H. Xu, M. Käll, Surface-enhanced Raman scattering and fluorescence near metal nanoparticles, Physical Review B 2005, 72, 035427.
[80]J. Dostálek, A. Kasry, W. Knoll, Long range surface plasmons for observation of biomolecular binding events at metallic surfaces, Plasmonics 2007, 2, 97.
[81]D. Sarid, Long-range surface-plasma waves on very thin metal films, Phys. Rev. Lett. 1981, 47, 1927.
[82]C. V. Raman, K. S. Krishnan, A new type of secondary radiation, Nature 1928, 121, 501.
[83]D. A. Long, Rotational and vibration–rotation resonance Raman scattering, in The Raman effect, John Wiley & Sons, Ltd, 2002, 271.
[84]E. Smith, G. Dent, Modern Raman spectroscopy – A practical approach, John Wiley & Sons, Ltd, 2005.
[85]M. Schmitt, J. Popp, Raman spectroscopy at the beginning of the twenty-first century, J. Raman Spectrosc. 2006, 37, 20.
[86]A. F. Chrimes, K. Khoshmanesh, P. R. Stoddart, A. Mitchell, K. Kalantar-zadeh, Microfluidics and Raman microscopy: current applications and future challenges, Chem. Soc. Rev. 2013, 42, 5880.
[87]D. L. Jeanmaire, R. P. Van Duyne, Surface Raman spectroelectrochemistry, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84, 1.
[88]M. G. Albrecht, J. A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, JACS 1977, 99, 5215.
[89]A. Campion, P. Kambhampati, Surface-enhanced Raman scattering, Chem. Soc. Rev. 1998, 27, 241.
[90]S. Schlücker, SERS microscopy: Nanoparticle probes and biomedical applications, in Surface Enhanced Raman Spectroscopy, Wiley-VCH Verlag GmbH & Co. KGaA, 2010, 263.
[91]G. C. Schatz, R. P. Van Duyne, Electromagnetic mechanism of surface-enhanced spectroscopy, in Handbook of Vibrational Spectroscopy, John Wiley & Sons, Ltd, 2006.
[92]P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. V. Duyne, Surface-enhanced Raman spectroscopy, Annual Review of Analytical Chemistry 2008, 1, 601.
[93]E. C. Le Ru, P. G. Etchegoin, Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy, Chem. Phys. Lett. 2006, 423, 63.
[94]K. Kneipp, M. Moskovits, H. Kneipp, Surface-enhanced raman scattering: physics and applications, Springer, Berlin; New York 2006.
[95]M. Osawa, N. Matsuda, K. Yoshii, I. Uchida, Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution, The Journal of Physical Chemistry 1994, 98, 12702.
[96]A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, Surface-enhanced Raman scattering, J. Phys.: Condens. Matter 1992, 4, 1143.
[97]D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, W. Moerner, Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas, The Journal of chemical physics 2006, 124, 061101.
[98]E. J. Blackie, E. C. L. Ru, P. G. Etchegoin, Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules, JACS 2009, 131, 14466.
[99]S. Schlücker, Surface‐enhanced Raman spectroscopy: Concepts and chemical applications, Angew. Chem. Int. Ed. 2014, 53, 4756.
[100]R. P. Van Duyne, J. C. Hulteen, D. A. Treichel, Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass, J. Chem. Phys. 1993, 99, 2101.
[101]C. L. Haynes, R. P. Van Duyne, Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy†, J. Phys. Chem. B 2003, 107, 7426.
[102]A. D. McFarland, M. A. Young, J. A. Dieringer, R. P. Van Duyne, Wavelength-scanned surface-enhanced Raman excitation spectroscopy, The Journal of Physical Chemistry B 2005, 109, 11279.
[103]K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering, Phys. Rev. Lett. 1996, 76, 2444.
[104]K. Kneipp, H. Kneipp, H. G. Bohr, Single-molecule SERS spectroscopy, in Surface-enhanced Raman scattering, Springer, 2006, 261.
[105]K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett. 1997, 78, 1667.
[106]T. Wang, Z. Zhang, F. Liao, Q. Cai, Y. Li, S.-T. Lee, M. Shao, The effect of dielectric constants on noble metal/semiconductor SERS enhancement: FDTD simulation and experiment validation of Ag/Ge and Ag/Si substrates, Sci. Rep. 2014, 4, 4052.
[107]E. Le Ru, E. Blackie, M. Meyer, P. G. Etchegoin, Surface enhanced Raman scattering enhancement factors: A comprehensive study, The Journal of Physical Chemistry C 2007, 111, 13794.
[108]J. R. Lakowicz, Principles of fluorescence spectroscopy, Springer, New York 2006.
[109]J. Gersten, A. Nitzan, Spectroscopic properties of molecules interacting with small dielectric particles, The Journal of Chemical Physics 1981, 75, 1139.
[110]P. Anger, P. Bharadwaj, L. Novotny, Enhancement and quenching of single-molecule fluorescence, Phys. Rev. Lett. 2006, 96, 113002.
[111]J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, C. D. Geddes, Radiative decay engineering: the role of photonic mode density in biotechnology, J. Phys. D: Appl. Phys. 2003, 36, R240.
[112]K. Sokolov, G. Chumanov, T. M. Cotton, Enhancement of molecular fluorescence near the surface of colloidal metal films, Anal. Chem. 1998, 70, 3898.
[113]R. L. Lundblad, Practical handbook of biochemistry and molecular biology, CRC Press, 2008.
[114]H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, J. Wenger, Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations, Nano Lett. 2011, 11, 637.
[115]J. R. Lakowicz, Radiative decay engineering 3. Surface plasmon-coupled directional emission, Anal. Biochem. 2004, 324, 153.
[116]S. Hayashi, Spectroscopy of gap Modes in metal particle—surface systems, in Near-field optics and surface plasmon polaritons, Springer, 2001, 71.
[117]I. Gryczynski, J. Malicka, Z. Gryczynski, J. R. Lakowicz, Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission, Anal. Biochem. 2004, 324, 170.
[118]A. M. Kern, A. J. Meixner, O. J. F. Martin, Molecule-dependent plasmonic enhancement of fluorescence and Raman scattering near realistic nanostructures, ACS Nano 2012, 6, 9828.
[119]P. G. Etchegoin, E. C. Le Ru, Basic electromagnetic theory of SERS, in Surface enhanced Raman spectroscopy, Wiley-VCH Verlag GmbH & Co. KGaA, 2010, 1.
[120]A. R. Guerrero, Y. Zhang, R. F. Aroca, Experimental confirmation of local field enhancement determining far-field measurements with shell-isolated silver nanoparticles, Small 2012, 8, 2964.
[121]R. K. Chang, T. E. Furtak, Surface enhanced Raman scattering, Plenum Press, New York 1982.
[122]H. Ebert, Magneto-optical effects in transition metal systems, Rep. Prog. Phys. 1996, 59, 1665.
[123]M. Moskovits, Surface-enhanced spectroscopy, Rev. Mod. Phys. 1985, 57, 783.
[124]E. J. Zeman, G. C. Schatz, An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium, J. Phys. Chem. 1987, 91, 634.
[125]P. Mulvaney, Surface plasmon spectroscopy of nanosized metal particles, Langmuir 1996, 12, 788.
[126]K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, The Journal of Physical Chemistry B 2003, 107, 668.
[127]S. Schlücker, Surface enhanced Raman spectroscopy : analytical, biophysical and life science applications, Wiley-VCH Verlag, Weinheim, Germany 2011.
[128]C. J. Orendorff, A. Gole, T. K. Sau, C. J. Murphy, Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence, Anal. Chem. 2005, 77, 3261.
[129]X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, Y. Xia, Chemical synthesis of novel plasmonic nanoparticles, Annu. Rev. Phys. Chem. 2009, 60, 167.
[130]B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, L. M. Liz-Marzán, LSPR-based nanobiosensors, Nano Today 2009, 4, 244.
[131]E. Petryayeva, U. J. Krull, Localized surface plasmon resonance: Nanostructures, bioassays and biosensing - A review, Anal. Chim. Acta 2011, 706, 8.
[132]Y. Yokota, K. Ueno, H. Misawa, Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles, Chem. Commun. 2011, 47, 3505.
[133]P. G. Etchegoin, E. C. Le Ru, Basic electromagnetic theory of SERS, in Surface Enhanced Raman Spectroscopy: analytical, biophysical and life science applications, (Ed: S. Schlücker), Wiley-VCH, 2011, 1.
[134]E. Fort, S. Grésillon, Surface enhanced fluorescence, J. Phys. D: Appl. Phys. 2007, 41, 013001.
[135]A. R. Guerrero, R. F. Aroca, Surface‐enhanced fluorescence with shell‐isolated nanoparticles (SHINEF), Angew. Chem. Int. Ed. 2011, 50, 665.
[136]A. M. Gabudean, M. Focsan, S. Astilean, Gold nanorods performing as dual-modal nanoprobes via metal-enhanced fluorescence (MEF) and surface-enhanced Raman scattering (SERS), The Journal of Physical Chemistry C 2012, 116, 12240.
[137]Y. Zhang, J. Qian, D. Wang, Y. Wang, S. He, Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy, Angew. Chem. Int. Ed. 2013, 52, 1148.
[138]Z. Wang, S. Zong, W. Li, C. Wang, S. Xu, H. Chen, Y. Cui, SERS-Fluorescence Joint Spectral Encoding Using Organic–Metal–QD Hybrid Nanoparticles with a Huge Encoding Capacity for High-Throughput Biodetection: Putting Theory into Practice, JACS 2012, 134, 2993.
[139]B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria, Alzheimer's & Dementia 2016, 12, 292.
[140]S. Blanco, R. Bandiera, M. Popis, S. Hussain, P. Lombard, J. Aleksic, A. Sajini, H. Tanna, R. Cortés-Garrido, N. Gkatza, S. Dietmann, M. Frye, Stem cell function and stress response are controlled by protein synthesis, Nature 2016, 534, 335.
[141]S. Zong, Z. Wang, R. Zhang, C. Wang, S. Xu, Y. Cui, A multiplex and straightforward aqueous phase immunoassay protocol through the combination of SERS-fluorescence dual mode nanoprobes and magnetic nanobeads, Biosens. Bioelectron. 2013, 41, 745.
[142]S. Jeong, Y.-i. Kim, H. Kang, G. Kim, M. G. Cha, H. Chang, K. O. Jung, Y.-H. Kim, B.-H. Jun, D. W. Hwang, Y.-S. Lee, H. Youn, Y.-S. Lee, K. W. Kang, D. S. Lee, D. H. Jeong, Fluorescence-Raman dual modal endoscopic system for multiplexed molecular diagnostics, Sci. Rep. 2015, 5, 9455.
[143]X. Niu, H. Chen, Y. Wang, W. Wang, X. Sun, L. Chen, Upconversion fluorescence-SERS dual-mode tags for cellular and in vivo imaging, ACS Applied Materials and Interfaces 2014, 6, 5152.
[144]M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L. M. Liz-Marzán, Shape control in gold nanoparticle synthesis, Chem. Soc. Rev. 2008, 37, 1783.
[145]A. Boltasseva, Plasmonic components fabrication via nanoimprint, Journal of Optics A: Pure and Applied Optics 2009, 11, 114001.
[146]A. Kosiorek, W. Kandulski, H. Glaczynska, M. Giersig, Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks, Small 2005, 1, 439.
[147]H. Wang, F. Tam, N. K. Grady, N. J. Halas, Cu nanoshells: Effects of interband transitions on the nanoparticle plasmon resonance, The Journal of Physical Chemistry B 2005, 109, 18218.
[148]Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?, Angew. Chem. Int. Ed. 2009, 48, 60.
[149]Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science 2002, 298, 2176.
[150]A. Tao, P. Sinsermsuksakul, P. Yang, Polyhedral silver nanocrystals with distinct scattering signatures, Angew. Chem. Int. Ed. 2006, 45, 4597.
[151]J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, R. P. Van Duyne, Probing the structure of single-molecule surface-enhanced Raman scattering hot spots, JACS 2008, 130, 12616.
[152]Z. S. Pillai, P. V. Kamat, What factors control the size and shape of silver nanoparticles in the citrate ion reduction method?, The Journal of Physical Chemistry B 2004, 108, 945.
[153]M. Kemp, Silver mirror, J. Chem. Educ 1981, 58, 655.
[154]L. Qu, L. Dai, Novel silver nanostructures from silver mirror reaction on reactive substrates, The Journal of Physical Chemistry B 2005, 109, 13985.
[155]A. R. Tao, S. Habas, P. Yang, Shape control of colloidal metal nanocrystals, small 2008, 4, 310.
[156]Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Shape‐controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?, Angew. Chem. Int. Ed. 2009, 48, 60.
[157]R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, C. A. Mirkin, Controlling anisotropic nanoparticle growth through plasmon excitation, Nature 2003, 425, 487.
[158]J. Zhang, S. Li, J. Wu, G. C. Schatz, C. A. Mirkin, Plasmon‐mediated synthesis of silver triangular bipyramids, Angew. Chem. 2009, 121, 7927.
[159]P. Pinkhasova, L. Yang, Y. Zhang, S. Sukhishvili, H. Du, Differential SERS activity of gold and silver nanostructures enabled by adsorbed poly (vinylpyrrolidone), Langmuir 2012, 28, 2529.
[160]J. Xie, Q. Zhang, J. Y. Lee, D. I. Wang, The synthesis of SERS-active gold nanoflower tags for in vivo applications, ACS nano 2008, 2, 2473.
[161]X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, S. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags, Nat. Biotechnol. 2008, 26, 83.
[162]Z. Merican, T. L. Schiller, C. J. Hawker, P. M. Fredericks, I. Blakey, Self-assembly and encoding of polymer-stabilized gold nanoparticles with surface-enhanced Raman reporter molecules, Langmuir 2007, 23, 10539.
[163]X. Tan, Z. Wang, J. Yang, C. Song, R. Zhang, Y. Cui, Polyvinylpyrrolidone-(PVP-) coated silver aggregates for high performance surface-enhanced Raman scattering in living cells, Nanotechnology 2009, 20, 445102.
[164]M. Yang, T. Chen, W. S. Lau, Y. Wang, Q. Tang, Y. Yang, H. Chen, Development of polymer‐encapsulated metal nanoparticles as surface‐enhanced Raman scattering probes, Small 2009, 5, 198.
[165]K. C. Weng, C. O. Noble, B. Papahadjopoulos-Sternberg, F. F. Chen, D. C. Drummond, D. B. Kirpotin, D. Wang, Y. K. Hom, B. Hann, J. W. Park, Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo, Nano Lett. 2008, 8, 2851.
[166]W. E. Doering, S. Nie, Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering, Anal. Chem. 2003, 75, 6171.
[167]S. P. Mulvaney, M. D. Musick, C. D. Keating, M. J. Natan, Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering, Langmuir 2003, 19, 4784.
[168]X. Liu, M. Knauer, N. P. Ivleva, R. Niessner, C. Haisch, Synthesis of core− shell surface-enhanced Raman tags for bioimaging, Anal. Chem. 2009, 82, 441.
[169]B. Kuestner, M. Gellner, M. Schuetz, F. Schoeppler, A. Marx, P. Stroebel, P. Adam, C. Schmuck, S. Schluecker, SERS labels for red laser excitation: Silica‐encapsulated SAMs on tunable gold/silver nanoshells, Angew. Chem. Int. Ed. 2009, 48, 1950.
[170]Y. Wang, B. Yan, L. Chen, SERS Tags: Novel Optical Nanoprobes for Bioanalysis, Chem. Rev. 2012, 113, 1391.
[171]Q. Zhang, W. Li, L.-P. Wen, J. Chen, Y. Xia, Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF3COOAg as a precursor, Chemistry – A European Journal 2010, 16, 10234.
[172]B. R. Shmaefsky, Artificial urine for laboratory testing, The American Biology Teacher 1990, 52, 170.
[173]S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, A. Dana, Label-free nanometer-resolution imaging of biological architectures through surface enhanced Raman scattering, Sci. Rep. 2013, 3, 2624.
[174]S. Hy, F. Felix, J. Rick, W.-N. Su, B. J. Hwang, Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1–2x)/3Mn(2–x)/3]O2 (0 ≤ x ≤0.5), JACS 2014, 136, 999.
[175]S. Hy, Felix, Y.-H. Chen, J.-y. Liu, J. Rick, B.-J. Hwang, In situ surface enhanced Raman spectroscopic studies of solid electrolyte interphase formation in lithium ion battery electrodes, J. Power Sources 2014, 256, 324.
[176]S. Weiss, Fluorescence spectroscopy of single biomolecules, Science 1999, 283, 1676.
[177]X. Kong, Q. Yu, X. Zhang, X. Du, H. Gong, H. Jiang, Synthesis and application of surface enhanced Raman scattering (SERS) tags of Ag@SiO2 core/shell nanoparticles in protein detection, J. Mater. Chem. 2012, 22, 7767.
[178]J. Zong, X. Yang, A. Trinchi, S. Hardin, I. Cole, Y. Zhu, C. Li, T. Muster, G. Wei, Photoluminescence enhancement of carbon dots by gold nanoparticles conjugated via PAMAM dendrimers, Nanoscale 2013, 5, 11200.
[179]T. T. B. Quyen, W.-N. Su, K.-J. Chen, C.-J. Pan, J. Rick, C.-C. Chang, B.-J. Hwang, Au@SiO2 core/shell nanoparticle assemblage used for highly sensitive SERS-based determination of glucose and uric acid, J. Raman Spectrosc. 2013, 44, 1671.
[180]T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, B.-J. Hwang, Self-focusing Au@SiO2 nanorods with Rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection, Journal of Materials Chemistry B 2014, 2, 629.
[181]U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Quantum dots versus organic dyes as fluorescent labels, Nat Meth 2008, 5, 763.
[182]M. Fan, F.-J. Lai, H.-L. Chou, W.-T. Lu, B.-J. Hwang, A. G. Brolo, Surface-enhanced Raman scattering (SERS) from Au:Ag bimetallic nanoparticles: the effect of the molecular probe, Chemical Science 2013, 4, 509.
[183]T. T. Bich Quyen, W.-N. Su, C.-H. Chen, J. Rick, J.-Y. Liu, B.-J. Hwang, Novel Ag/Au/Pt trimetallic nanocages used with surface-enhanced Raman scattering for trace fluorescent dye detection, Journal of Materials Chemistry B 2014, 2, 5550.
[184]S. Malynych, G. Chumanov, Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays, JACS 2003, 125, 2896.
[185]D. D. Evanoff, G. Chumanov, Synthesis and optical properties of silver nanoparticles and arrays, Chemphyschem 2005, 6, 1221.
[186]W. Cao, H. E. Elsayed-Ali, Stability of Ag nanoparticles fabricated by electron beam lithography, Mater. Lett. 2009, 63, 2263.
[187]B. Küstner, M. Gellner, M. Schütz, F. Schöppler, A. Marx, P. Ströbel, P. Adam, C. Schmuck, S. Schlücker, SERS labels for red laser excitation: Silica-encapsulated SAMs on tunable gold/silver nanoshells, Angew. Chem. Int. Ed. 2009, 48, 1950.
[188]J. Huang, K. H. Kim, N. Choi, H. Chon, S. Lee, J. Choo, Preparation of silica-encapsulated hollow gold nanosphere tags using layer-by-layer method for multiplex surface-enhanced Raman scattering detection, Langmuir 2011, 27, 10228.
[189]L. Rainville, M.-C. Dorais, D. Boudreau, Controlled synthesis of low polydispersity Ag@SiO2 core-shell nanoparticles for use in plasmonic applications, RSC Advances 2013, 3, 13953.
[190]M. Zdanowicz, J. Harra, J. M. Makela, E. Heinonen, T. Ning, M. Kauranen, G. Genty, Second-harmonic response of multilayer nanocomposites of silver-decorated nanoparticles and silica, Sci. Rep. 2014, 4, 5745.
[191]M. Sanles-Sobrido, W. Exner, L. Rodríguez-Lorenzo, B. Rodríguez-González, M. A. Correa-Duarte, R. A. Álvarez-Puebla, L. M. Liz-Marzán, Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles, JACS 2009, 131, 2699.
[192]C. Graf, D. L. J. Vossen, A. Imhof, A. van Blaaderen, A general method to coat colloidal particles with silica, Langmuir 2003, 19, 6693.
[193]X. Zhang, X. Kong, Z. Lv, S. Zhou, X. Du, Bifunctional quantum dot-decorated Ag@SiO2 nanostructures for simultaneous immunoassays of surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF), Journal of Materials Chemistry B 2013, 1, 2198.
[194]V. Uzayisenga, X.-D. Lin, L.-M. Li, J. R. Anema, Z.-L. Yang, Y.-F. Huang, H.-X. Lin, S.-B. Li, J.-F. Li, Z.-Q. Tian, Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy, Langmuir 2012, 28, 9140.
[195]Y. Cui, X.-S. Zheng, B. Ren, R. Wang, J. Zhang, N.-S. Xia, Z.-Q. Tian, Au@organosilica multifunctional nanoparticles for the multimodal imaging, Chemical Science 2011, 2, 1463.
[196]K. Ray, J. R. Lakowicz, Metal-enhanced fluorescence lifetime imaging and spectroscopy on a modified SERS substrate, The Journal of Physical Chemistry C 2013, 117, 15790.
[197]J. Yang, F. Zhang, Y. Chen, S. Qian, P. Hu, W. Li, Y. Deng, Y. Fang, L. Han, M. Luqman, D. Zhao, Core-shell Ag@SiO2@mSiO2 mesoporous nanocarriers for metal-enhanced fluorescence, Chem. Commun. 2011, 47, 11618.
[198]L. Lu, Y. Qian, L. Wang, K. Ma, Y. Zhang, Metal-enhanced fluorescence-based core–shell Ag@SiO2 nanoflares for affinity biosensing via target-induced structure switching of aptamer, ACS Applied Materials & Interfaces 2014, 6, 1944.
[199]K. Aslan, J. Lakowicz, C. Geddes, Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date, Anal. Bioanal. Chem. 2005, 382, 926.
[200]S. Elzey, V. H. Grassian, Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments, J. Nanopart. Res. 2010, 12, 1945.
[201]M. Meier, A. Wokaun, Enhanced fields on large metal particles: Dynamic depolarization, Opt. Lett. 1983, 8, 581.
[202]A. Wokaun, J. Gordon, P. Liao, Radiation damping in surface-enhanced Raman scattering, Phys. Rev. Lett. 1982, 48, 957.
[203]L. Sun, Y. Song, L. Wang, C. Guo, Y. Sun, Z. Liu, Z. Li, Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection, The Journal of Physical Chemistry C 2008, 112, 1415.
[204]M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, Nanostructured plasmonic sensors, Chem. Rev. 2008, 108, 494.
[205]S. A. Little, T. Begou, R. W. Collins, S. Marsillac, Optical detection of melting point depression for silver nanoparticles via in situ real time spectroscopic ellipsometry, Appl. Phys. Lett. 2012, 100, 051107.
[206]J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, R. P. Van Duyne, Localized surface plasmon resonance biosensors, Nanomedicine 2006, 1, 219.
[207]A. Bottomley, D. Prezgot, J. P. Coyle, A. Ianoul, Dynamics of nanocubes embedding into polymer films investigated via spatially resolved plasmon modes, Nanoscale 2016, 8, 11168.
[208]T. R. Jensen, M. L. Duval, K. Lance Kelly, A. A. Lazarides, G. C. Schatz, R. P. Van Duyne, Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles, J. Phys. Chem. B 1999, 103, 9846.
[209]Y. Hong, Y.-M. Huh, D. S. Yoon, J. Yang, Nanobiosensors based on localized surface plasmon resonance for biomarker detection, Journal of Nanomaterials 2012, 2012, 13.
[210]Y. Kobayashi, H. Katakami, E. Mine, D. Nagao, M. Konno, L. M. Liz-Marzán, Silica coating of silver nanoparticles using a modified Stöber method, J. Colloid Interface Sci. 2005, 283, 392.
[211]O. Niitsoo, A. Couzis, Facile synthesis of silver core – silica shell composite nanoparticles, J. Colloid Interface Sci. 2011, 354, 887.
[212]D.-T. Krystyna, M. G. Ewa, Gold and silver nanowires for fluorescence enhancement, 2011.
[213]H. Xu, J. Aizpurua, M. Käll, P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Physical Review E 2000, 62, 4318.
[214]H. Xu, E. J. Bjerneld, M. Käll, L. Börjesson, Spectroscopy of single Hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett. 1999, 83, 4357.
[215]J. Kobler, K. Möller, T. Bein, Colloidal suspensions of functionalized mesoporous silica nanoparticles, ACS Nano 2008, 2, 791.
[216]R. Sasai, T. Fujita, N. Iyi, H. Itoh, K. Takagi, Aggregated structures of Rhodamine 6G intercalated in a fluor-taeniolite thin film, Langmuir 2002, 18, 6578.
[217]E. C. Le Ru, P. G. Etchegoin, M. Meyer, Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection, The Journal of Chemical Physics 2006, 125, 204701.
[218]P. Pinkhasova, L. Yang, Y. Zhang, S. Sukhishvili, H. Du, Differential SERS Activity of Gold and Silver Nanostructures Enabled by Adsorbed Poly(vinylpyrrolidone), Langmuir 2012, 28, 2529.
[219]C. G. Khoury, T. Vo-Dinh, Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization, The journal of physical chemistry. C, Nanomaterials and interfaces 2008, 2008, 18849.
[220]T. Xuebin, W. Zhuyuan, Y. Jing, S. Chunyuan, Z. Ruohu, C. Yiping, Polyvinylpyrrolidone- (PVP-) coated silver aggregates for high performance surface-enhanced Raman scattering in living cells, Nanotechnology 2009, 20, 445102.
[221]N. Dar, K.-Y. Chen, Y.-T. Nien, N. Perkas, A. Gedanken, I.-G. Chen, Sonochemically synthesized Ag nanoparticles as a SERS active substrate and effect of surfactant, Appl. Surf. Sci. 2015, 331, 219.
[222]K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, C. Gao, Porous Au–Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis, Nano Lett. 2016, 16, 3675.
[223]A. F. Chrimes, K. Khoshmanesh, P. R. Stoddart, A. A. Kayani, A. Mitchell, H. Daima, V. Bansal, K. Kalantar-zadeh, Active control of silver nanoparticles spacing using dielectrophoresis for surface-enhanced Raman scattering, Anal. Chem. 2012, 84, 4029.
[224]M. Culha, B. Cullum, N. Lavrik, C. K. Klutse, Surface-enhanced Raman scattering as an emerging characterization and detection technique, Journal of Nanotechnology 2012, 2012, 15.
[225]D. Fernand, C. Pardanaud, D. Bergé-Lefranc, P. Gallice, V. Hornebecq, Adsorption of Rhodamine 6G on SiO2 and Ag@SiO2 porous solids: Coupling thermodynamics and Raman spectroscopy, The Journal of Physical Chemistry C 2014, 118, 15308.
[226]T. Tan, C. Tian, Z. Ren, J. Yang, Y. Chen, L. Sun, Z. Li, A. Wu, J. Yin, H. Fu, LSPR-dependent SERS performance of silver nanoplates with highly stable and broad tunable LSPRs prepared through an improved seed-mediated strategy, PCCP 2013, 15, 21034.
[227]X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, R. P. Van Duyne, Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography, IEE Proc Nanobiotechnol. 2005, 152, 195.
[228]A. Anedda, C. M. Carbonaro, F. Clemente, R. Corpino, S. Grandi, A. Magistris, P. C. Mustarelli, Rhodamine 6G–SiO2 hybrids: A photoluminescence study, J. Non-Cryst. Solids 2005, 351, 1850.
[229]W. Wang, Z. Li, B. Gu, Z. Zhang, H. Xu, Ag@SiO2 core−shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering, ACS Nano 2009, 3, 3493.
[230]V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, S. A. Maier, Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters, Chem. Rev. 2011, 111, 3888.
[231]J. Zhang, J. R. Lakowicz, Metal-enhanced fluorescence of an organic fluorophore using gold particles, Opt. Express 2007, 15, 2598.
[232]R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, N. J. Halas, Fluorescence enhancement by Au nanostructures: Nanoshells and nanorods, ACS Nano 2009, 3, 744.
[233]J. Lakowicz, C. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, J. Huang, Advances in surface-enhanced fluorescence, Journal of Fluorescence 2004, 14, 425.
[234]Y. Yang, M. Y. Gao, Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method, Adv. Mater. 2005, 17, 2354.
[235]M. Darbandi, G. Urban, M. Krüger, Bright luminescent, colloidal stable silica coated CdSe/ZnS nanocomposite by an in situ, one-pot surface functionalization, J. Colloid Interface Sci. 2012, 365, 41.
[236]C. Battocchio, C. Meneghini, I. Fratoddi, I. Venditti, M. V. Russo, G. Aquilanti, C. Maurizio, F. Bondino, R. Matassa, M. Rossi, Silver nanoparticles stabilized with thiols: a close look at the local chemistry and chemical structure, The Journal of Physical Chemistry C 2012, 116, 19571.
[237]H. S. Toh, C. Batchelor-McAuley, K. Tschulik, R. G. Compton, Chemical interactions between silver nanoparticles and thiols: a comparison of mercaptohexanol against cysteine, Science China Chemistry 2014, 57, 1199.
[238]K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, Surface-plasmon-enhanced light emitters based on InGaN quantum wells, Nat Mater 2004, 3, 601.
[239]H. Abramczyk, B. Brozek-Pluska, Raman imaging in biochemical and biomedical applications. Diagnosis and treatment of breast cancer, Chem. Rev. 2013, 113, 5766.
[240]A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, Plasmonic nanorod metamaterials for biosensing, Nat Mater 2009, 8, 867.
[241]K. K. Hering, R. Moller, W. Fritzsche, J. Popp, Microarray-based detection of dye-labeled DNA by SERRS using particles formed by enzymatic silver deposition, Chemphyschem 2008, 9, 867.
[242]K. Lee, V. P. Drachev, J. Irudayaraj, DNA−gold nanoparticle reversible networks grown on cell surface marker sites: Application in diagnostics, ACS Nano 2011, 5, 2109.
[243]D. J. Maxwell, J. R. Taylor, S. Nie, Self-assembled nanoparticle probes for recognition and detection of biomolecules, JACS 2002, 124, 9606.
[244]B. Jang, J.-Y. Park, C.-H. Tung, I.-H. Kim, Y. Choi, Gold nanorod−photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo, ACS Nano 2011, 5, 1086.
[245]J. W. Dobrucki, D. Feret, A. Noatynska, Scattering of exciting light by live cells in fluorescence confocal imaging: Phototoxic effects and relevance for FRAP studies, Biophys. J. 2007, 93, 1778.
[246]R. L. Joseph, G. Ignacy, A. Kadir, D. G. Chris, Metal-enhanced fluorescence sensing, in Fluorescence Sensors and Biosensors, CRC Press, 2005, 121.
[247]X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics, Science 2005, 307, 538.
[248]R. Hardman, A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors, Environ. Health Perspect. 2006, 114, 165.
[249]A. Lee, G. F. S. Andrade, A. Ahmed, M. L. Souza, N. Coombs, E. Tumarkin, K. Liu, R. Gordon, A. G. Brolo, E. Kumacheva, Probing dynamic generation of hot-spots in self-assembled chains of gold nanorods by surface-enhanced Raman scattering, JACS 2011, 133, 7563.
[250]E. Hao, G. Schatz, J. Hupp, Synthesis and optical properties of anisotropic metal nanoparticles, Journal of Fluorescence 2004, 14, 331.
[251]E. Petryayeva, U. J. Krull, Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review, Anal. Chim. Acta 2011, 706, 8.
[252]X. Xia, W. Li, Y. Zhang, Y. Xia, Silica-coated dimers of silver nanospheres as surface-enhanced Raman scattering tags for imaging cancer cells, Interface Focus 2013, 3.
[253]N. S. Abadeer, M. R. Brennan, W. L. Wilson, C. J. Murphy, Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods, ACS Nano 2014, 8, 8392.
[254]L. M. Liz-Marzán, M. Giersig, P. Mulvaney, Synthesis of nanosized gold−silica core−shell particles, Langmuir 1996, 12, 4329.
[255]N. M. Kha, C.-H. Chen, W.-N. Su, J. Rick, B.-J. Hwang, Improved Raman and photoluminescence sensitivity achieved using bifunctional Ag@SiO2 nanocubes, PCCP 2015, 17, 21226.
[256]S. M. Ansar, F. S. Ameer, W. Hu, S. Zou, C. U. Pittman, D. Zhang, Removal of molecular adsorbates on gold nanoparticles using sodium borohydride in water, Nano Lett. 2013, 13, 1226.
[257]K. Aslan, M. Wu, J. R. Lakowicz, C. D. Geddes, Fluorescent core−shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms, JACS 2007, 129, 1524.
[258]T. Zhao, K. Yu, L. Li, T. Zhang, Z. Guan, N. Gao, P. Yuan, S. Li, S. Q. Yao, Q.-H. Xu, G. Q. Xu, Gold nanorod enhanced two-photon excitation fluorescence of photosensitizers for two-photon imaging and photodynamic therapy, ACS Applied Materials & Interfaces 2014, 6, 2700.
[259]K. Wu, J. Zhang, S. Fan, J. Li, C. Zhang, K. Qiao, L. Qian, J. Han, J. Tang, S. Wang, Plasmon-enhanced fluorescence of PbS quantum dots for remote near-infrared imaging, Chem. Commun. 2015, 51, 141.
[260]A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, M. Lin, Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers, Sci. Rep. 2015, 5, 7779.
[261]J. Asselin, P. Legros, A. Grégoire, D. Boudreau, Correlating metal-enhanced fluorescence and structural properties in Ag@SiO2 core-shell nanoparticles, Plasmonics 2016, 11, 1369.
[262]M. Lismont, L. Dreesen, B. Heinrichs, C. A. Páez, Protoporphyrin IX-functionalized AgSiO2 core–shell nanoparticles: Plasmonic enhancement of fluorescence and singlet oxygen production, Photochem. Photobiol. 2016, 92, 247.
[263]L. Wu, X. Qu, Cancer biomarker detection: recent achievements and challenges, Chem. Soc. Rev. 2015, 44, 2963.
[264]R. De La Rica, M. M. Stevens, Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye, Nature nanotechnology 2012, 7, 821.
[265]N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, C. M. Netti, Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering, Opt. Express 2006, 14, 847.
[266]M. K. Nieuwoudt, J. W. Martin, R. N. Oosterbeek, N. I. Novikova, X. Wang, J. Malmström, D. E. Williams, M. C. Simpson, Gold-sputtered Blu-ray discs: Simple and inexpensive SERS substrates for sensitive detection of melamine, Anal. Bioanal. Chem. 2016, 408, 4403.
[267]S. M. Weiss, Y. Jiao, J. D. Ryckman, P. N. Ciesielski, G. K. Jennings, Nanoscale porous gold film sers template, United States Patent, 2011.
[268]R. Buividas, P. R. Stoddart, S. Juodkazis, Laser fabricated ripple substrates for surface‐enhanced Raman scattering, Annalen der Physik 2012, 524, L5.
[269]J. Li, C. Chen, H. Jans, X. Xu, N. Verellen, I. Vos, Y. Okumura, V. V. Moshchalkov, L. Lagae, P. Van Dorpe, 300 mm Wafer-level, ultra-dense arrays of Au-capped nanopillars with sub-10 nm gaps as reliable SERS substrates, Nanoscale 2014, 6, 12391.
[270]D. Gangopadhyay, P. Sharma, S. K. Singh, P. Singh, N. Tarcea, V. Deckert, J. Popp, R. K. Singh, Raman spectroscopic approach to monitor the in vitro cyclization of creatine → creatinine, Chem. Phys. Lett. 2015, 618, 225.
[271]K. Vikram, S. Mishra, S. K. Srivastava, R. K. Singh, Low temperature Raman and DFT study of creatinine, J. Mol. Struct. 2012, 1012, 141.
[272]R. A. Copeland, T. G. Spiro, Ultraviolet resonance Raman spectroscopy of flavin mononucleotide and flavin-adenine dinucleotide, The Journal of Physical Chemistry 1986, 90, 6648.
[273]R. Jiang, B. Li, C. Fang, J. Wang, Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications, Adv. Mater. 2014, 26, 5274.
[274]J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, Biosensing with plasmonic nanosensors, Nat Mater 2008, 7, 442.
[275]Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, A. T. S. Wee, Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures, Nat Commun 2016, 7, 11283.
[276]T. V. Shahbazyan, Theory of plasmon-enhanced metal photoluminescence, Nano Lett. 2013, 13, 194.
[277]E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures, Science 2003, 302, 419.
[278]J. Geldmeier, T. König, M. A. Mahmoud, M. A. El-Sayed, V. V. Tsukruk, Tailoring the plasmonic modes of a grating-nanocube assembly to achieve broadband absorption in the visible spectrum, Adv. Funct. Mater. 2014, 24, 6797.
[279]J. Zhang, Y. Tang, K. Lee, M. Ouyang, Tailoring light-matter-spin interactions in colloidal hetero-nanostructures, Nature 2010, 466, 91.
[280]G. A. Sotiriou, F. Starsich, A. Dasargyri, M. C. Wurnig, F. Krumeich, A. Boss, J.-C. Leroux, S. E. Pratsinis, Photothermal killing of cancer cells by the controlled plasmonic coupling of silica-coated Au/Fe2O3 nanoaggregates, Adv. Funct. Mater. 2014, 24, 2818.
[281]R. Mayeux, Biomarkers: Potential uses and limitations, NeuroRx 2004, 1, 182.
[282]A. D. Warren, S. T. Gaylord, K. C. Ngan, M. Dumont Milutinovic, G. A. Kwong, S. N. Bhatia, D. R. Walt, Disease detection by ultrasensitive quantification of microdosed synthetic urinary biomarkers, JACS 2014, 136, 13709.
[283]S. Debernardi, N. J. Massat, T. P. Radon, A. Sangaralingam, A. Banissi, D. P. Ennis, T. Dowe, C. Chelala, S. P. Pereira, H. M. Kocher, B. D. Young, G. Bond-Smith, R. Hutchins, T. Crnogorac-Jurcevic, Noninvasive urinary miRNA biomarkers for early detection of pancreatic adenocarcinoma, Am. J. Cancer Res. 2015, 5, 3455.
[284]D. G. Burke, P. G. MacLean, R. A. Walker, P. J. Dewar, T. Smith-Palmer, Analysis of creatine and creatinine in urine by capillary electrophoresis, Journal of Chromatography B: Biomedical Sciences and Applications 1999, 732, 479.
[285]C. Francoz, D. Prié, W. AbdelRazek, R. Moreau, A. Mandot, J. Belghiti, D. Valla, F. Durand, Inaccuracies of creatinine and creatinine‐based equations in candidates for liver transplantation with low creatinine: Impact on the model for end‐stage liver disease score, Liver Transpl. 2010, 16, 1169.
[286]D. B. Barr, L. C. Wilder, S. P. Caudill, A. J. Gonzalez, L. L. Needham, J. L. Pirkle, Urinary creatinine concentrations in the U.S. population: Implications for urinary biologic monitoring measurements, Environ. Health Perspect. 2005, 113, 192.
[287]P. F. Fitzpatrick, Substrate dehydrogenation by flavoproteins, Acc. Chem. Res. 2001, 34, 299.
[288]A. A. Heikal, Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies, Biomark. Med. 2010, 4, 241.
[289]B. T. van Maldegem, M. Duran, R. J. A. Wanders, H. R. Waterham, F. A. Wijburg, Flavin adenine dinucleotide status and the effects of high-dose riboflavin treatment in short-chain Acyl-CoA dehydrogenase deficiency, Pediatr. Res. 2010, 67, 304.
[290]M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, N. Ramanujam, In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia, Proceedings of the National Academy of Sciences 2007, 104, 19494.
[291]A. Carrouée, E. Allard-Vannier, S. Même, F. Szeremeta, J.-C. Beloeil, I. Chourpa, Sensitive trimodal magnetic resonance imaging-surface-enhanced resonance Raman scattering-fluorescence detection of cancer cells with stable magneto-plasmonic nanoprobes, Anal. Chem. 2015, 87, 11233.
[292]P. V. Patil, D. M. Bendale, R. K. Puri, V. Puri, Refractive index and adhesion of Al2O3 thin films obtained from different processes — A comparative study, Thin Solid Films 1996, 288, 120.
[293]J. Gangwar, B. K. Gupta, S. K. Tripathi, A. K. Srivastava, Phase dependent thermal and spectroscopic responses of Al2O3 nanostructures with different morphogenesis, Nanoscale 2015, 7, 13313.
[294]K. Tadanaga, N. Katata, T. Minami, Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol–gel method, J. Am. Ceram. Soc. 1997, 80, 3213.
[295]R. N. Wenzel, Surface roughness and contact angle, The Journal of Physical and Colloid Chemistry 1949, 53, 1466.
[296]D. Y. Smith, E. Shiles, M. Inokuti, The optical properties of metallic aluminum, in Handbook of optical constants of solids, Academic Press, Boston 1985, 369.
[297]J. De Laet, H. Terryn, J. Vereecken, J. Vanhellemont, Spectroscopic ellipsometry characterization of anodic films on aluminium correlated with transmission electron microscopy and Auger electron spectroscopy, Surf. Interface Anal. 1992, 19, 445.
[298]A. Shadowitz, The electromagnetic field, Dover Publications, New York 1988.
[299]K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, The optical properties of metal nanoparticles:  The influence of size, shape, and dielectric environment, The Journal of Physical Chemistry B 2003, 107, 668.
[300]A. L. González, C. Noguez, Optical properties of silver nanoparticles, Physica Status Solidi (C) 2007, 4, 4118.
[301]L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, R. P. Van Duyne, Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms, Nano Lett. 2006, 6, 2060.
[302]S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, J. F. Löffler, Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays, JACS 2012, 134, 1966.
[303]K. Golberg, A. Elbaz, Y. Zhang, A. I. Dragan, R. Marks, C. D. Geddes, Mixed-metal substrates for applications in metal-enhanced fluorescence, J. Mater. Chem. 2011, 21, 6179.
[304]D. Sarid, W. A. Challener, Modern introduction to surface plasmons: Theory, mathematica modeling, and applications, Cambridge University Press, New York 2010.
[305]R. Keuleers, H. O. Desseyn, B. Rousseau, C. Van Alsenoy, Vibrational analysis of urea, The Journal of Physical Chemistry A 1999, 103, 4621.
[306]X. Feng, Q. Shang, H. Liu, H. Wang, W. Wang, Z. Wang, Effect of adenine on the photoluminescence properties and stability of water-soluble CdTe quantum dots, The Journal of Physical Chemistry C 2009, 113, 6929.
[307]N. Wang, Y. Wen, Y. Wang, R. Zhang, X. Zhang, D. Xiong, H. Yang, Facile and controlled synthesis of self-conjugated Ag@IP6-micelle compositions for surface-enhanced spectroscopic application, J. Mater. Chem. 2010, 20, 2317.
[308]L. Sun, D. Zhao, M. Ding, Z. Xu, Z. Zhang, B. Li, D. Shen, Controllable synthesis of silver nanoparticle aggregates for surface-enhanced Raman scattering studies, The Journal of Physical Chemistry C 2011, 115, 16295.
[309]X.-l. Wang, R.-l. Zong, S.-k. Shi, Y. Zhu, Ultrasensitive and reproducible surface-enhanced Raman scattering detection via an optimized adsorption process and filter-based substrate, Analytical Methods 2014, 6, 4130.
[310]X. X. Han, Y. Kitahama, Y. Tanaka, J. Guo, W. Q. Xu, B. Zhao, Y. Ozaki, Simplified protocol for detection of protein−ligand interactions via surface-enhanced resonance Raman scattering and surface-enhanced fluorescence, Anal. Chem. 2008, 80, 6567.
[311]Z. Bai, R. Chen, P. Si, Y. Huang, H. Sun, D.-H. Kim, Fluorescent pH sensor based on Ag@SiO2 core–shell nanoparticle, ACS Applied Materials & Interfaces 2013, 5, 5856.
[312]Y. Liu, P. Wu, Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets, ACS Applied Materials & Interfaces 2013, 5, 5832.
[313]C. Wang, Y. Kuang, L. Luo, X. Sun, Highly controlled bifunctional Ag@rubrene core-shell nanostructures: Surface-enhanced fluorescence and Raman scattering, Journal of Materials Chemistry C 2013, 1, 4146.

QR CODE