研究生: |
柯元鴻 Yuan-Hong Ke |
---|---|
論文名稱: |
新型腸道治療醫材的原型開發與驗證 Prototype Development and Verification of New Intestinal Treatment Devices |
指導教授: |
張復瑜
Fuh-Yu Chang |
口試委員: |
陳盈君
李宗錞 |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 機械工程系 Department of Mechanical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 二型糖尿病 、胰島素阻抗 、十二指腸黏膜表面重塑 、超音波 、腸道支架 、3D列印 |
外文關鍵詞: | Type 2 Diabetes, Insulin Resistance, Duodenal Mucosal Resurfacing, Ultrasound, Intestinal Stent, 3D Printing |
相關次數: | 點閱:314 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究聚焦於改善二型糖尿病(Type 2 Diabetes)患者的胰島素阻抗問題,探索新型治療醫材的開發。二型糖尿病是一種常見的代謝性疾病,其主要特徵為胰島素阻抗及胰島素分泌不足,常伴隨多種嚴重併發症。現有治療方法包括生活方式干預、藥物治療、手術治療和內視鏡治療,儘管這些方法在一定程度上能夠控制病情,但仍存在諸多挑戰,如治療效果有限、副作用大以及患者依從性差等問題。
本研究提出並驗證了一種新型的組合腸道支架,其設計靈感來自於胃繞道手術,旨在減少食物與十二指腸壁的接觸,從而改善胰島素阻抗問題。支架結構分為固定段、連接段以及覆膜支架三部分,其中覆膜支架採用熱塑性聚氨酯(TPU)材料,透過旋轉軸式3D列印機進行製作,再藉由浸塗技術將支架進行覆膜。結果顯示,組合腸道支架於腸道模型中證實了能夠有效阻隔食糜與腸壁的接觸,以此改善胰島素阻抗,並且固定段及連接段設計能夠有效防止腸道支架產生滑移及避免膽道口封閉等問題。
此外,本研究提出一新型十二指腸黏膜表面重塑(Duodenal Mucosal Resurfacing,DMR)手術方法及裝置。本研究創新地使用超音波技術,透過可傳導超音波的加熱板與腸壁接觸,以進行十二指腸黏膜的加熱消融,從而促進上皮細胞再生,改善胰島素敏感性。實驗顯示,超音波DMR手術裝置原型可於三秒內加熱腸道表層至60C,此結果顯示創新裝置的高消融效率及有效降低較深層組織損傷的可能性,具有潛在的臨床應用價值。總結來說,本研究所提出的組合腸道支架與超音波DMR手術為二型糖尿病的治療方式提供了新的解決方案,並為未來相關研究提供了重要參考。
This study focuses on improving insulin resistance in patients with Type 2 Diabetes (T2D) through the development of innovative therapeutic medical devices. T2D is a common metabolic disorder characterized by insulin resistance and insufficient insulin secretion, sometimes accompanied by severe complications. Current treatment methods include lifestyle interventions, pharmacotherapy, surgical treatment, and endoscopic treatment. While these methods can control the disease to some extent, they still present many challenges, such as limited therapeutic efficacy, significant side effects, and poor patient compliance.
This study proposes and validates a novel combined intestinal stent, inspired by gastric bypass surgery, designed to reduce the contact between food and the duodenal wall, thereby improving insulin resistance. The stent structure consists of three parts: the fixed segment, the connecting segment, and the covered stent. The covered stent is made of thermoplastic polyurethane (TPU) material, manufactured using a specialized 3D printer with a rotational axis, and coated using by dipping technology. Results show that the combined intestinal stent effectively prevents the contact between chyme and the intestinal wall in an intestinal model, thus improving insulin resistance. Additionally, the design of the fixed and connecting segments effectively prevents stent migration and avoids the closure of the biliary duct.
Furthermore, this study proposes a novel method and device for duodenal mucosal resurfacing (DMR). Innovatively using ultrasound technology, the device employs an ultrasound-conductive heating plate to contact the intestinal wall for duodenal mucosal heating ablation, promoting epithelial cell regeneration and improving insulin sensitivity. Experiments show that the prototype of the ultrasound DMR device could heat the intestinal surface to 60°C within three seconds, demonstrating high ablation efficiency and significantly reducing the possibility of deeper tissue damage, showing potential clinical application value. In summary, the combined intestinal stent and ultrasound DMR surgery proposed in this study offer new solutions for the treatment of T2D and provide important references for future related research.
1. 衛生福利部國民健康署. 三高防治專區. 2023; Available from: https://www.hpa.gov.tw/Pages/List.aspx?nodeid=359.
2. Federation, I.D. Diabetes data Portal. 2021; Available from: https://diabetesatlas.org/data/en/.
3. Bastaki, S., Diabetes mellitus and its treatment. International journal of Diabetes and Metabolism, 2005. 13(3): p. 111-134.
4. Diseases, National Institute of Diabetes and Digestive and Kidney Diseases. Diabetes Overview. 2023; Available from: https://www.niddk.nih.gov/health-information/diabetes/overview/.
5. American Diabetes Association. About Diabetes. Available from: https://diabetes.org/about-diabetes.
6. Protein Data Bank, Diabetes Mellitus Complication. Available from: https://pdb101.rcsb.org/global-health/diabetes-mellitus/monitoring/complications.
7. OKLAHOMA Mental Health & Substance Abuse, Types of Diabetes. 2020; Available from: https://oklahoma.gov/odmhsas/recovery/wellness/diabetes.html.
8. Tolhurst, G., F. Reimann, and F.M. Gribble, Intestinal sensing of nutrients. Appetite Control, 2012: p. 309-335.
9. Psichas, A., F. Reimann, and F.M. Gribble, Gut chemosensing mechanisms. The Journal of clinical investigation, 2015. 125(3): p. 908-917.
10. Theodorakis, M.J., et al., Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. American Journal of Physiology-Endocrinology and Metabolism, 2006. 290(3): p. E550-E559.
11. Van Baar, A.C., et al., Endoscopic duodenal mucosal resurfacing for the treatment of type 2 diabetes mellitus: one year results from the first international, open-label, prospective, multicentre study. Gut, 2020. 69(2): p. 295-303.
12. Wittgrove, A.C. and G.W. Clark, Laparoscopic gastric bypass, Roux en-Y-500 patients: technique and results, with 3-60 month follow-up. Obesity surgery, 2000. 10(3): p. 233-239.
13. Van Baar, A.C.G., et al., Alternative treatments for type 2 diabetes and associated metabolic diseases: medical therapy or endoscopic duodenal mucosal remodelling? Gut, 2021. 70(11): p. 2196-2204.
14. Tahrani, A.A., A.H. Barnett, and C.J. Bailey, SGLT inhibitors in management of diabetes. The lancet Diabetes & endocrinology, 2013. 1(2): p. 140-151.
15. Sanchez-Rangel, E. and S.E. Inzucchi, Metformin: clinical use in type 2 diabetes. Diabetologia, 2017. 60: p. 1586-1593.
16. Barnett, A., DPP‐4 inhibitors and their potential role in the management of type 2 diabetes. International journal of clinical practice, 2006. 60(11): p. 1454-1470.
17. Tomlinson, B., et al., The role of sulfonylureas in the treatment of type 2 diabetes. Expert Opinion on Pharmacotherapy, 2022. 23(3): p. 387-403.
18. Davidson, M.A., et al., Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Critical reviews in toxicology, 2018. 48(1): p. 52-108.
19. Hoyt, J.A., et al., A look at duodenal mucosal resurfacing: Rationale for targeting the duodenum in type 2 diabetes. Diabetes, Obesity and Metabolism, 2024.
20. Rubino, F., et al., The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Annals of surgery, 2006. 244(5): p. 741-749.
21. Health, U. ROUX-EN-Y GASTRIC BYPASS (RYGB). 2024; Available from: https://hospital.uillinois.edu/primary-and-specialty-care/surgical-services/bariatric-surgery-program/our-services/roux-en-y-gastric-bypass-rygb.
22. Kim, W. and J.M. Egan, The role of incretins in glucose homeostasis and diabetes treatment. Pharmacological reviews, 2008. 60(4): p. 470-512.
23. Buchwald, H., et al., Bariatric surgery: a systematic review and meta-analysis. Jama, 2004. 292(14): p. 1724-1737.
24. Wikipedia. duodenum. 2024; Available from: https://en.wikipedia.org/wiki/Duodenum.
25. Wikipedia. Major duodenal papilla. 2024; Available from: https://en.wikipedia.org/wiki/Major_duodenal_papilla.
26. Okamoto, T., et al., Placement of a metallic stent across the main duodenal papilla may predispose to cholangitis. Gastrointestinal endoscopy, 2006. 63(6): p. 792-796.
27. Lopera, J.E., et al., Gastroduodenal stent placement: current status. Radiographics, 2004. 24(6): p. 1561-1573.
28. Laasch, H.-U., D. Martin, and I. Maetani, Enteral stents in the gastric outlet and duodenum. Endoscopy, 2005. 37(01): p. 74-81.
29. Feng, Y., et al., Intestinal stents: Structure, functionalization and advanced engineering innovation. Biomaterials Advances, 2022. 137: p. 212810.
30. Pergal, M.V., et al., Structure and properties of thermoplastic polyurethanes based on poly (dimethylsiloxane): assessment of biocompatibility. Journal of Biomedical Materials Research Part A, 2014. 102(11): p. 3951-3964.
31. Azaouzi, M., A. Makradi, and S. Belouettar, Deployment of a self-expanding stent inside an artery: a finite element analysis. Materials & Design, 2012. 41: p. 410-420.
32. Stoeckel, D., A. Pelton, and T. Duerig, Self-expanding nitinol stents: material and design considerations. European radiology, 2004. 14(2): p. 292-301.
33. Pan, C., Y. Han, and J. Lu, Structural design of vascular stents: A review. Micromachines, 2021. 12(7): p. 770.
34. Khalaj, R., et al., 3D printing advances in the development of stents. International journal of pharmaceutics, 2021. 609: p. 121153.
35. Guerra, A., A. Roca, and J. de Ciurana, A novel 3D additive manufacturing machine to biodegradable stents. Procedia Manufacturing, 2017. 13: p. 718-723.
36. Hua, W., et al., 3D printing of biodegradable polymer vascular stents: A review. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022. 1(2): p. 100020.
37. Lucas, M., A. Mathieson, and R. Cleary, Ultrasonic cutting for surgical applications, in Power Ultrasonics. 2023, Elsevier. p. 617-635.
38. Schafer, M. and R. Cleary, Ultrasonic surgical devices and procedures, in Power ultrasonics. 2023, Elsevier. p. 539-556.
39. Jaffe, H. and D. Berlincourt, Piezoelectric transducer materials. Proceedings of the IEEE, 1965. 53(10): p. 1372-1386.
40. 陳聖平, 複雜外型超音波放大器之有限元素分析與最佳化設計. 國立交通大學機械工程系所碩士論文, 2009.
41. Ring, E. and K. Ammer, Infrared thermal imaging in medicine. Physiological measurement, 2012. 33(3): p. R33.
42. Kaplan, H., Practical applications of infrared thermal sensing and imaging equipment. Vol. 75. 2007: SPIE press.
43. Fluke. What is Thermal Imaging? How a Thermal Image is Captured. 2024; Available from: https://www.fluke.com/en-us/learn/blog/thermal-imaging/how-infrared-cameras-work.
44. Cronin, C.G., et al., Normal small bowel wall characteristics on MR enterography. European journal of radiology, 2010. 75(2): p. 207-211.
45. images, M. This xray was obtained from an upper GI (gastrointestinal) series and shows normal anatomy of the stomach and duodenum.; Available from: https://www.mauritius-images.com/en/search?q=00100418.
46. Nylund, K., et al., Gastrointestinal wall thickness measured with transabdominal ultrasonography and its relationship to demographic factors in healthy subjects. Ultraschall in der Medizin-European Journal of Ultrasound, 2012: p. E225-E232.
47. Son, J. and H. Lee, Preliminary study on polishing SLA 3D-printed ABS-like resins for surface roughness and glossiness reduction. Micromachines, 2020. 11(9): p. 843.
48. Jing, B., et al., Establishment and application of peristaltic human gut-vessel microsystem for studying host–microbial interaction. Frontiers in bioengineering and biotechnology, 2020. 8: p. 272.
49. Li, W. and M. Nakano, Fabrication and characterization of PDMS based magnetorheological elastomers. Smart materials and structures, 2013. 22(5): p. 055035.
50. van den Berg, M.W., et al., High proximal migration rate of a partially covered “big cup” duodenal stent in patients with malignant gastric outlet obstruction. Endoscopy, 2014. 46(02): p. 158-161.
51. 梁德賢, 動靜脈廔管支架設計及以旋轉式3D列印進行製作. 國立臺灣科技大學, 2022. 機械工程系.
52. Pierce, D.S., et al., Open-cell versus closed-cell stent design differences in blood flow velocities after carotid stenting. Journal of vascular surgery, 2009. 49(3): p. 602-606.
53. 張耀邦, 新型主動脈瘤支架設計及製作並以仿真主動脈瘤血管模型進行功能驗證. 國立臺灣科技大學:台北市, 2021: p. 136.
54. Rykowska, I., I. Nowak, and R. Nowak, Drug-eluting stents and balloons—materials, structure designs, and coating techniques: a review. Molecules, 2020. 25(20): p. 4624.
55. Zhao, D., et al., Experimental study of polymeric stent fabrication using homemade 3D printing system. Polymer Engineering & Science, 2019. 59(6): p. 1122-1131.
56. Montgomery, D.C., Design and analysis of experiments. 2017: John wiley & sons.
57. Niemz, M.H., Laser-tissue interactions. Vol. 322. 2007: Springer.