簡易檢索 / 詳目顯示

研究生: 徐詩博
Shih-Bo Syu
論文名稱: 二氧化鈦光催化降解臭氧及丙二醇甲醚醋酸酯之研究
Study on Photocatalytic Degradation of Ozone and Propylene Glycol Monomethyl Ether Acetate over TiO2
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧 洋
Young Ku
席行正
Hsing-cheng Hsi
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 122
中文關鍵詞: 臭氧丙二醇甲醚醋酸酯反應動力學金屬改質光催化
外文關鍵詞: Ozone, propylene glycol monomethyl ether acetate, reaction kinetics, metal modification, photocatalysis
相關次數: 點閱:450下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用金屬改質二氧化鈦濾網,進行光催化降解臭氧以及丙二醇甲醚醋酸酯之反應,分別探討不同金屬改質、觸媒量等條件對於光催化速率的影響。本研究中應用含浸法製備二氧化鈦濾網。使用螢光光譜儀(PL)、X-ray光電子能譜儀(XPS)分析觸媒表面,以及傅立葉紅外線光譜儀(FTIR) 與氣相層析質譜儀(GC-MS)分析氣相中間產物。實驗結果顯示鈀的添加比例為1 mol %時,其對於整體臭氧有最好的去除活性,因鈀金屬本身即具優異催化效果,並可有效降低電子電洞再結合速率。
在反應動力學部份中,以Langmuir-Hinshelwood model為依據,改變不同反應參數可推導出合理的反應動力學模式。進一步探討在不同紫外線光源(UVA、UVC以及VUV)激發下的光催化反應,比較不同光源所產生的能量對於臭氧以及丙二醇甲醚醋酸酯轉化率之影響。
實驗結果顯示應用鈀改質觸媒在滯留時間0.43 min、UVA紫外光強度為2.75 mW/cm2時可以達到87 %以上的臭氧去除率;丙二醇甲醚醋酸酯應用錳改質觸媒在滯留時間1.1 min、VUV紫外光強度為5 mW/cm2時可達成66 %的去除效果,顯示本研究製備濾網具有降解污染氣體之應用潛力。


In this work, the photocatalytic degradation of gaseous ozone and propylene glycol monomethyl ether acetate (PGMEA) over metal-modified TiO2 filter under UV illumination in a continuous flow reaction was investigated in detail. The effects of kind of metal, amount of metal, and amount of titanium on photocatalytic reaction rate were studied to obtain the most reactive catalyst. The metal-modified ceramic filter was prepared in a dip coating process using the metal-containing titania sol. The surface physical properties of photocatalytic filter were analyzed by photoluminescence and X-ray photoelectron spectra, respectively. The reaction intermediates were determined by Fourier transform infrared spectrometer and gas chromatography–mass spectrometry. The results indicated that the photocatalytic filter with 1 mol% Pd exhibits best activity, result from the metal of Pd has a catalytic property for ozone degradation and it can also reduce the electron-hole recombination rate.
In the kinetic part, a rational reaction mechanism was satisfactorily developed by using Langmuir-Hinshelwood model and CSTR design equation. Several reactions factors were studied to obtain the kinetic parameters. The photocatalytic reactions were further carried out under different UV illuminations (UVA, UVC, and VUV) to clarify the effect of wavelength on degradation of ozone and PGMEA.
87% of conversion for ozone over Pd-modified photocatalyst in this system was achieved with a retention time of 0.43 min and UVA intensity at 2.75mW/cm2. On the other hand, the 66% of PGMEA was degraded over Mn-modified filter with a retention time of 1.1 min and VUV intensity at 5mW/cm2. The result showed the prepared material can be applied as effective filter for air purification system.

摘要…………………………………………………………………………………I Abstract…………………………………………….………………………………II 目錄…………………………………………….…………………………………Ⅲ 圖目錄…………………………………….………………………………………Ⅶ 表目錄………… …………………………………………………………………XI 第一章前言1 1-1臭氧簡介1 1-1-1臭氧生成方式1 1-1-2臭氧檢測方式2 1-2 臭氧氣體之應用3 1-3 臭氧氣體之危害6 1-4 產業排放污染氣體之背景8 1-5 揮發性有機物質簡介9 1-5-1含氧揮發性有機物質 ( OVOCs )10 1-6 丙二醇甲醚醋酸酯之簡介及應用11 1-7 VOCS對人體的危害性13 1-8 光觸媒之環境應用14 1-9 研究動機19 第二章文獻回顧21 2-1 二氧化鈦簡介21 2-2 光催化反應和原理24 2-3 奈米二氧化鈦材料製備27 2-4 二氧化鈦改質方法31 2-5 VOCs 處理技術33 2-6 臭氧降解36 2-7 PGMEA降解43 第三章研究方法45 3-1實驗規劃45 3-2實驗藥品46 3-3儀器設備47 3-4反應器設計51 3-5實驗步驟53 3-5-1樣品製備53 3-5-2臭氧之光催化降解反應步驟54 3-5-3丙二醇甲醚醋酸酯之光催化降解反應步驟55 第四章光催化臭氧57 4-1 光催化降解影響參數57 4-1-1臭氧之光解57 4-1-2觸媒量之影響58 4-1-3滯留時間61 4-1-4相對溼度之影響63 4-1-5光強度之影響66 4-1-6光源之影響67 4-1-7臭氧濃度之影響69 4-2 動力學推導71 4-2-1Langmuir-Hinshelwood model-PFR71 4-2-2Langmuir-Hinshelwood model-CSTR74 4-2-3Power Law80 4-3 金屬改質效應87 4-3-1螢光光子激發光譜儀88 4-4 鈀添加比例之影響90 4-4-1螢光光子激發光譜儀93 4-4-2X-ray光電子能譜儀94 4-5 T5Pd1觸媒反應效率之改善95 第五章光催化丙二醇甲醚醋酸酯98 5-1 空氣中丙二醇甲醚醋酸酯於FTIR之訊號判別98 5-2 光降解影響參數99 5-2-1丙二醇甲醚醋酸酯之光解99 5-2-2不同光源丙二醇甲醚醋酸酯之光解100 5-2-3進料濃度之影響101 5-2-4滯留時間之影響103 5-2-5金屬改質效應104 5-3 中間產物之分析106 5-3-1FTIR分析結果106 5-3-2GC-MS分析結果111 第六章結論與未來展望113 6-1 臭氧反應動力學之探討113 6-2 金屬改質觸媒最佳操作條件113 6-3 動力學機制114 6-4 丙二醇甲醚醋酸酯反應動力學之探討114 6-5 中間產物分析115 6-6 未來展望115 參考文獻 116 附錄 119  

[1] 行政院環境保護署,室內空氣品質監測網,“空氣中臭氧自動檢驗方法-紫外光吸收法”,(http://iaq.epa.gov.tw/indoorair/doc/A42011C.pdf)。
[2] 伍文召,「O3/Si-Fe OOH去除水中有機物的研究」,武漢理工大學,碩士論文,(2010)
[3] Thomas B. Kinraide , Charlotte Poschenrieder , Peter M. Kopittke, “The standard electrode potential (Eθ) predicts the prooxidant activity and the acute toxicity of metal ions. ” Journal of Inorganic Biochemistry,2011,105,p.1438-1445.
[4] 孚巨環境科技股份有限公司,“臭氧說明”
(http://www.fouchu.com.tw/ozone.htm)。
[5] 行政院環境保護署,空氣品質監測網,“空氣污染指標”,(http://taqm.epa.gov.tw/taqm/tw/b0201.aspx)。
[6] Sanford Sillman, Perry J. Samson, “Impact of temperature on oxidant photochemistry in urban, polluted rural and remote environments. ”Journal of Geophysical research ,1995,100, p.11497-11508.
[7] 彭筱婷,「以生物濾床處理排氣中乙酸甲氧基異丙酯(PGMEA)之操作性能研究」,碩士論文,國立中山大學環境工程研究所,(2005)
[8] 行政院環境保護署,“揮發性有機物空氣污染管制及排放標準”, (http://www.shihwu.gov.tw/cht/newsview_snyc.php?menuID=3509&forewordID=135006&secureChk=2c1d5a4bdab921bc679037e6f27b9430 ),(2011)
[9] 顏敬秦,「以滲透管法製備OVOC標準氣體並應用於線上檢量」,碩士論文,國立中央大學化學系,(2011)
[10] Roger Atkinson , “Atmospheric chemistry of VOCs and NOx.”, Atmospheric Environment,2000,34,p.2063-2101.
[11] 行政院環境保護署,“空氣汙染排放量查詢系統”,(http://ivy2.epa.gov.tw/air-ei/new_main2-0.htm)
[12] Michael E. Jenkin, Garry D. Hayman, “Photochemical ozone creation potentials for oxygenated volatile organic compounds: sensitivity to variations in kinetic and mechanistic parameters”, Atmospheric Environment ,1999,33, p.1275-1293.
[13] 張榮峰,「影響廢光阻稀釋劑蒸餾回收率之因子探討」,碩士在職專班論文,國立中央大學境工程研究所,(2011)
[14] 高雄市政府環境保護局空氣污染防制網,“有害空氣污染物介紹” (http://air.ksepb.gov.tw/dispPageBox/AQMPCP.aspx?ddsPageID=AQMPC4&)
[15] 林有銘,功能性粉末奈米光觸媒,科學發展-第408期,(2006)
[16] 李澈,「光催化降解磷化氫之動力學探討」,碩士論文,國立台灣科技大學化學工程系,(2011)
[17] J.R. Smyth , D.L. Bish, “Crystal Structures and Cation Sites of the Rock‐Forming Minerals”, 1988,p. 34-40.
[18] A. Mills, S. L. Hunte, “An overview of semiconductor photocatalysis”, Journal of Photochemistry and Photobiology A: Chemistry, 1997,108, p.1-35.
[19] 李陵杰,「銀-碳共改質二氧化鈦及其紫外光與可見光應答光催化活性之研究」,碩士論文,國立台灣科技大學化學工程系,2012
[20] University of Colorado Mineral Structure and Property Data TiO2 Group
[21] Hyunwoong Park, Yiseul Park, Wooyul Kim, Wonyong Choi , “Surface modification of TiO2 photocatalyst for environmental applications. ”, Journal of Photochemistry and Photobiology C:
Photochemistry Reviews,2013,15,p.1-20.
[22] Andrew Mills, Soo-Keun Lee, Anne Lepre , “ Photodecomposition of ozone sensitised by a film of titanium dioxide on glass. ”, Journal of Photochemistry and Photobiology A: Chemistry,2003,155,p.199-205.
[23]胡雯雯,隱形殺手臭氧,南都周刊,19期,(2012) .
[24] Yuanwei Lu , Xiaohua Zhao , Mingyuan Wang , Zhilong Yang , XingJuan Zhang ,Chunxin Yang , “ Feasibility analysis on photocatalytic removal of gaseous ozone in aircraft cabins. ”,Building and Environment ,2014,81,p.42-50.
[25] Philip E. Hockberger , “A History of Ultraviolet Photobiology for Humans, Animals and Microorganisms. ”, Photochemistry and Photobiology,2002,76(6) ,p.561-579.
[26] Jeonghyun Kim , Pengyi Zhang , Jinge Li , Jinlong Wang , Pingfeng Fu , “Photocatalytic degradation of gaseous toluene and ozone under
UV254+185 nm irradiation using a Pd-deposited TiO2 film. ”, Chemical Engineering Journal ,2014,252,p.337-345.
[27] 蔡沛珺,“錳改質二氧化鈦於真空紫外光下降解甲苯之研究”,碩士論文,國立台灣科技大學化學工程系,(2013)
[28] 黃柏仁,“利用紫外線/臭氧處理氣相中1,3-丁二烯與乙酸甲氧基異丙酯之反應動力研究”,博士論文,國立中山大學環境工程研究所(2005)
[29] 黃柏凱,“鎳改質二氧化鈦製備及其光催化活性之研究”,碩士論文,台灣科技大學化工系,(2009)
[30] NIST Chemistry WebBook ( http://webbook.nist.gov/chemistry/).

QR CODE