簡易檢索 / 詳目顯示

研究生: 陳彥融
Yen-Jung Chen
論文名稱: 基於自由度修正的解析運動學進行連桿機構之拓樸及尺寸生成
Topological and Dimensional Synthesis of Linkage Mechanism Based on Analytical Kinematics with Mobility Correction
指導教授: 林柏廷
Po-Ting Lin
口試委員: 陳羽薰
徐冠倫
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 105
中文關鍵詞: 機構運動學分析機構運動學合成基因演算法連桿機構運動學
外文關鍵詞: mechanism kinematics analysis, mechanism kinematics synthesis, genetic algorithm, link mechanism kinematics
相關次數: 點閱:244下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著各式各樣的產業逐漸步入自動化的階段,例如貨物的運輸、手術的操作,越來越多需求在尋找能由機器人代勞的可能,此時器械、機械的運動學設計就成為產品研發之初,相當必要的環節。
機械動力傳遞主要分成齒輪、凸輪、和連桿三種方式,其中本研究著眼於連桿機構的運動學設計。運動學設計又涵蓋運動學分析以及運動學合成,本研究將以一使用基因演算法針對運動目標,生成連桿機構構型的運動學合成方法為基礎,加上連桿機構運動學分析方法,對前者的運動學合成結果進行運動學分析,並對指定輸入角度/位移分析對應的輸出構型,使預測生成機構的運動結果更加完整,也改善前者(運動學合成方法)在計算接頭座標時,原先使用約束疊加法在小角度上的限制和誤差。
在以上分析過程中,本研究為從任意生成的連桿機構,自動取得必要的資訊以帶入分析,需要進行一自由度修正的動作,將多餘而不影響機構運動方式的連桿排除於分析式外,進而計算出完整且精準的分析結果。
本研究主要分為五個階段:連桿機構學的應用方式、基因演算法結果的資料擷取、自由度修正、最佳解機構構型運動學分析、對指定輸入的對應輸出構型。最後詳細介紹整體分析流程,並以圖示呈現最佳機構構型與輸出的運動學分析結果、構型運動方式,以及與原方法的結果比較。


As various industries gradually enter the stage of automation, there is an increasing demand to find tasks that can be performed by robots, such as transportation of goods or delicate operations like surgeries. In such cases, the kinematic design of mechanisms and machines becomes a crucial aspect during product development.
Mechanical power transmission can be mainly classified into three methods: gears, cams, and linkages. This study focuses on the kinematic design of linkage mechanisms. Kinematic design consists both kinematic analysis and kinematic synthesis. In this research, we build upon a work utilizes genetic algorithms to generate kinematic synthesis of linkage mechanisms based on motion objectives. We combine it with a kinematic analysis method for linkage mechanisms to analyze the kinematic synthesis results and predict the output configurations corresponding to any input angles/displacements. This enhances the completeness of predicting the motion results of the generated mechanisms and improves the limitations and errors present in the kinematic synthesis original method when calculating joint coordinates using the constrained superposition method at small angles.
Throughout the analysis process, this study automates the acquisition of necessary information from any generated linkage mechanism for analysis. A mobility correction is performed to exclude redundant linkages that do not affect the motion of the mechanism from the analysis equations, resulting in comprehensive and accurate analysis results.
The study is divided into five sections: application of linkage mechanisms kinematics, data extraction from genetic algorithm results, mobility correction, kinematic analysis of optimal solution mechanism, and determination of corresponding output configurations for arbitrary inputs. The overall analysis process is described in detail, and the results of kinematic analysis, motion characteristics, and a comparison with the original method are presented using illustrations to showcase the optimal mechanism configuration and its corresponding kinematic analysis results.

摘要 III ABSTRACT IV 誌謝 VI 目錄 VII 圖目錄 X 表目錄 XIV 符號索引 XV 第一章、緒論 1 1.1 前言與研究動機 1 1.2 論文架構 2 第二章、文獻回顧 3 2.1 基因演算法運動學合成 3 2.2 約束疊加法 4 2.3 連桿機構運動學分析 6 2.3.1 順逆向連桿機構運動學分析 6 第三章、研究方法 8 3.1 最佳解機構構型之資料處理 8 3.1.1 最佳染色體分析 8 3.1.2 最佳染色體變數資料整理 15 3.2 指定輸入對應之輸出接頭座標位置討論 16 3.2.1 計算公式與可行解討論 16 3.3 自由度修正 19 3.3.1 多餘桿件的存在 19 3.3.2 多餘桿件的數量 20 3.3.3 選出必要桿件 21 3.3.4 多餘接地接頭省略 24 3.4 輸出接頭運動分析 25 3.4.1 座標位置分析總流程 25 3.4.2 對指定輸入角度/位移直接分析 29 第四章、實驗結果 30 4.1 以旋轉機構設計為例 30 4.1.1 指定輸入對應輸出接頭座標分析 30 4.1.2 解析法與約束疊加法比較 34 4.2 以夾爪機構設計為例 39 4.2.1 指定輸入對應輸出接頭座標分析 39 4.2.2 解析法與約束疊加法比較 41 4.3 以反向機構設計為例 46 4.3.1 指定輸入對應輸出接頭座標分析 46 4.3.2 解析法與約束疊加法比較 49 4.4 以切換機構設計為例 52 4.4.1 指定輸入對應輸出接頭座標分析 52 4.4.2 解析法與約束疊加法比較 54 第五章、結論與未來展望 59 5.1 結論 59 5.2 未來展望 60 參考文獻 62 附錄 66 最大分析單位角度/位移整理 87

[1] H. Chi-Yeh, A general method for the optimum design of mechanisms, Journal of mechanisms, 1(3-4), 301-313, 1966.
[2] S. Kramer, G. Sandor, Selective precision synthesis—a general method of optimization for planar mechanisms, 1975.
[3] V. Sohoni, E. Haug, A state space technique for optimal design of mechanisms, 1982.
[4] M. P. Bendsoe, O. Sigmund, Topology optimization: theory, methods, and applications, Springer Science & Business Media, 2003.
[5] J. Cabrera, A. Simon, M. Prado, Optimal synthesis of mechanisms with genetic algorithms, Mechanism and machine theory, 37(10), 1165-1177, 2002.
[6] P. Chedmail, E. Ramstein, Robot mechanism synthesis and genetic algorithms, Proceedings of IEEE international conference on robotics and automation, 3466-3471, 1996.
[7] W.-J. Chen, C.-J. Chang, H. C. Gea, Topology and dimensional synthesis of linkage mechanism based on the Constrained Superposition Method, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 789-797, 2008.
[8] G. N. Sandor, A general complex-number method for plane kinematic synthesis with applications, Columbia University, 1959.
[9] A. G. Erdman, Three and four precision point kinematic synthesis of planar linkages, Mechanism and Machine Theory, 16(3), 227-245, 1981.
[10] K. L. Hsu, J. Y. Chung, A Modular Method for Mechanical Error Analysis of Planar linkages Composed of Class II Assur Group Kinematic Chains, Journal of Mechanisms and Robotics, 14(1), 2022.
[11] F. Freudenstein, An analytical approach to the design of four-L mechanisms, Transactions of the American Society of Mechanical Engineers, 76(3), 483-489, 1954.
[12] A. S. Hall, T. Goodman, Kinematics and linkage design, Journal of Applied Mechanics, 28(4), 639, 1961.
[13] R. Beyer, The kinematic synthesis of mechanisms, McGraw-Hill, 1963.
[14] M. P. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Computer methods in applied mechanics and engineering, 71(2), 197-224, 1988.
[15] T. Chandrupatla, Finite Element Analysis For Engineering & Tech, Universities Press, 2004.
[16] J. Kwon, Mechamism Design Using Genetic Algorithms, Rutgers University, 2005.
[17] C. Y. Wan, W. C. Li, X. Zhao, The Research on Motion Reliability Simulation of Planar linkage Mechanism, Advanced Materials Research, 664-669, 2012.
[18] T. Młynarski, Position analysis of planar linkages using the method of modification of kinematic units, Mechanism and machine theory, 31(6), 831-838, 1996.
[19] S. Erkaya, İ. Uzmay, Determining L parameters using genetic algorithm in mechanisms with joint clearance, Mechanism and Machine Theory, 44(1), 222-234, 2009.
[20] O. Sharfi, M. Smith, A simple method for the allocation of appropriate tolerances and clearances in linkage mechanisms, Mechanism and Machine Theory, 18(2), 123-129, 1983.
[21] H.-J. Kim, Y. Jeong, J.-W. Kim, T.-J. Nam, M. Sketch: Prototyping tool for linkage-based mechanism design, Adjunct Proceedings of the 29th Annual ACM Symposium on User Interface Software and Technology, 75-77, 2016.
[22] L.-W. Tsai, Mechanism design: enumeration of kinematic structures according to function, CRC press, 2000.
[23] S. Acharyya, M. Mandal, Performance of EAs for four-bar linkage synthesis, Mechanism and Machine Theory, 44(9), 1784-1794, 2009.
[24] P. Sheth, J. Uicker Jr, IMP (Integrated Mechanisms Program), a computer-aided design analysis system for mechanisms and linkage, 1972.
[25] S. I. Kim, Y. Y. Kim, Topology optimization of planar linkage mechanisms, International Journal for Numerical Methods in Engineering, 98(4), 265-286, 2014.
[26] H. Asada, I. H. Ro, A linkage design for direct-drive robot arms, 1985.
[27] T. Mruthyunjaya, Kinematic structure of mechanisms revisited, Mechanism and machine theory, 38(4), 279-320, 2003.
[28] R. Hartenberg, J. Danavit, Kinematic synthesis of linkages, New York: McGraw-Hill, 1964.
[29] C. W. Wampler, Solving the kinematics of planar mechanisms, 1999.
[30] G. H. Martin, Kinematics and dynamics of machines, Waveland Press, 2002.
[31] M.-J. Tsai, T.-H. Lai, Kinematic sensitivity analysis of linkage with joint clearance based on transmission quality, Mechanism and Machine Theory, 39(11), 1189-1206, 2004.
[32] A. K. Mallik, Kinematic analysis and synthesis of mechanisms, Crc Press, 2021.
[33] M. Raghavan, B. Roth, Inverse kinematics of the general 6R manipulator and related linkages, 1993.
[34] J. Kim, Task based kinematic design of a two DOF manipulator with a parallelogram five-bar L mechanism, Mechatronics, 16(6), 323-329, 2006.
[35] C. U. Galletti, A note on modular approaches to planar linkage kinematic analysis, Mechanism and Machine Theory, 21(5), 385-391, 1986.
[36] K.-M. Lee, D. K. Shah, Kinematic analysis of a three-degrees-of-freedom in-parallel actuated manipulator, IEEE Journal on Robotics and Automation, 4(3), 354-360, 1988.
[37] J. M. McCarthy, Introduction to theoretical kinematics, MIT press, 1990.
[38] J. H. Holland, Genetic algorithms and the optimal allocation of trials, SIAM journal on computing, 2(2), 88-105, 1973.

QR CODE