簡易檢索 / 詳目顯示

研究生: 王柏皓
Po-Hao Wang
論文名稱: 不同尺寸與電極數目的離子風扇受不 同供電方式和入風口遮蔽下之效應
Effects of Electrical Driving Conditions and Inlet Blockage on Electrohydrodynamic Pumps with Different Number of Electrodes and Sizes
指導教授: 溫琮毅
Tsrong-Yi Wen
口試委員: 林顯群
Sheam-Chyun Lin
田維欣
Wei-Hsin Tien
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 138
中文關鍵詞: 離子風扇電暈放電冠狀電壓冠狀電流PQ曲線
外文關鍵詞: Electrohydrodynamic (EHD) pump, corona discharge, corona voltage, corona current, PQ curve
相關次數: 點閱:226下載:39
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技進步,電子產品尺寸下降與功率提升,單位面積的熱密度也隨之提高,如何解熱成為熱管理產業重要的議題。熱管理中經常使用葉片風扇來實行強制對流增加熱傳效率;但葉片風扇面臨空間受限制、噪音、與機械動件可靠度等挑戰。因此,發展新型風扇是熱管理產業重要的目標。離子風扇具有結構簡單、無噪音、與體積小等特點,透過電暈放電機制而產生氣流,是熱管理方案中的新選擇。欲在熱管理中使用離子風扇,必須先得知性能曲線(PQ曲線)是否滿足熱管理的需求。其中,熱管理產業中常用的性能曲線大多沒有考慮入風口遮蔽效應。然而,已經有研究證實,遮蔽效應會顯著地影響葉片風扇的性能曲線。本研究針對線對圓柱幾何形式離子風扇,在不同冠狀電極數目、不同收集電極數目、不同尺寸、不同入風口條件(有/無遮蔽效應)、與不同供電方式(定冠狀電壓/定冠狀電流)下的靜壓與流量進行全因子參數實驗。實驗是使用符合標準風機測試規範(Air Movement and Control Association, AMCA 210)的流動平台來量測離子風扇的靜壓與流量,並透過量測離子風扇之冠狀電壓與冠狀電流,與模擬離子化區域來探討其電場強度。結果顯示,在相同冠狀電壓下,大尺寸與冠狀電極數目少的離子風扇具有較高的冠狀電流、較大離子化區域、較大靜壓、與較高流量。變異數分析指出,尺寸與冠狀電極數目是二個最顯著影響靜壓與流量的參數。結果也顯示,在定冠狀電壓下,遮蔽效應降低約10%離子風扇的最大靜壓與降低約52%的最大流量;然而,在定冠狀電流下,遮蔽效應不會影響離子風扇的最大靜壓,僅會降低約30%的最大流量。另外,由改變冠狀電極數目而造成靜壓與流量的變異在定冠狀電壓下會大於定冠狀電流。


    With the advance of technology, the decreasing size of electronics and the increasing power implies that the heat density increases. Thermal management becomes essential for thermal industries. Forced convection is the most common thermal management practice in the industry and is usually implemented by, at least, the airflow-generating devices such as rotary fans to enhance thermal transfer efficiency. However, rotary fans encounter challenges such as limitation of size, noise issue, and reliability issue due to mechanical moving parts. Developing an emerging fan is getting its importance. Electrohydrodynamic (EHD) pumps, operating based on corona discharge, have characteristics of simple configurations (require only electrodes), noise-less, and small form factors, provide an alternative option for thermal management. In order to implement EHD pumps in thermal management, the performance curves (PQ curves) have to be evaluated in advance. Moreover, the inlet conditions have to be considered as the blockage effect degrades the performance of rotary fans. This full factorial study investigates the static pressure and the flow rate of wire-to-rods EHD pumps under different number of corona electrodes, different number of collector electrodes, different inlet conditions (with or without blockage effect), and different electrical driving conditions. The experimental setup for measuring the static pressure and the flow rate is the flow bench that meets the industrial standard AMCA 210. The corona current-corona voltage characteristics are measured and the ionization regions are numerically simulated. Results show, under constant corona voltage, EHD pumps with large size and less number of corona electrodes have high corona current, large ionization regions, high static pressure and high flow rate. The analysis of variance indicates that the size and the number of corona current are the two most significant factors for the static pressure and the flow rate. Results also show, under constant corona voltage, blockage effect degrades 10% static pressure and 52% flow rate. However, for the constant corona current, the blockage effect does not degrade the static pressure. It reduces only the maximum flow rate by 30%. Moreover, by applying either constant corona voltage or constant corona current onto the same EHD pumps, the variance of the maximum static pressure and the maximum flow rate cause by changing the number of corona electrodes under constant corona voltage is larger than that of the constant corona current.

    致謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I 中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIII 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIII 第一章 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 離子風扇 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 離子風扇之發展 . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 電暈放電生成離子風 . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.3 離子風扇的優缺點 . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 不同幾何型式之離子風扇 . . . . . . . . . . . . . . . . . . . . 7 1.3.2 電場強度與分佈 . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.3 應用離子風扇於熱管理 . . . . . . . . . . . . . . . . . . . . . 12 V 1.3.4 離子風扇性能相關研究 . . . . . . . . . . . . . . . . . . . . . 13 1.4 研究目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 第二章 實驗原理與方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 離子化區域 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 電液動力學統御方程式 . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 實驗方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.1 實驗架設 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.2 風管的靜壓補償 . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.3 實驗設置-離子風扇特徵曲線 . . . . . . . . . . . . . . . . . . 25 2.3.4 實驗參數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.5 實驗儀器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.6 模擬離子化區域大小 . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.7 利用統計分析實驗結果 . . . . . . . . . . . . . . . . . . . . . 34 第三章 無遮蔽效應下之結果與討論 . . . . . . . . . . . . . . . . . . . . . . . 36 3.1 不同尺寸與不同電極數目離子風扇之特徵曲線 . . . . . . . . . . . . . 36 3.2 不同尺寸與不同電極數目之離子風扇在定冠狀電壓下的 PQ 曲線 . . 38 3.3 不同尺寸與不同電極數目之離子風扇在定冠狀電流下的 PQ 曲線 . . 53 VI 第四章 遮蔽效應下之結果與討論 . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.1 定冠狀電壓在遮蔽效應的之 PQ 曲線 . . . . . . . . . . . . . . . . . . 64 4.2 定冠狀電流與遮蔽效應下的 PQ 曲線 . . . . . . . . . . . . . . . . . . 84 第五章 結論與建議 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.2 未來工作與建議 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

    [1] A. C. Reddy, ”Simulation of MgO/AA6061 particulate-reinforced composites
    taking account of CTE mismatch effects and interphase separation,” in 3rd
    National Conference on Materials and Manufacturing Processes, Hyderabad,
    India, 2002, pp. 184-187.
    [2] S.V.Garimella, A.S.Fleischer, J.Y.Murthy, A.Keshavarzi, R.Prasher, and
    C. Patel, ”Thermal challenges in next-generation electronic systems,” IEEE
    Transactions on Components and Packaging Technologies, vol. 31, pp. 801
    815, 2008.
    [3] A.L.MooreandL.Shi, ”Emergingchallengesandmaterialsforthermalman
    agement of electronics,” Materials Today, vol. 17, pp. 163-174, 2014.
    [4] International Data Corporation. Available: https://www.idc.com/
    [5] IntelCPUPowerConsumption. Available: http://www.coolpc.com.tw/AMD.htm
    [6] F. Hauksbee, Physico-mechanical experiments on various subjects: containing
    an account of several surprizing phaenomena touching light and electricity,
    producible on the attrition of bodies. with many other remarkable appear
    ances, not before observ’d. together with the explanations of all the machines,
    (the figures of which are curiously engrav’d on copper) and other apparatus
    us’d in making the experiments. to which is added, a supplement, containing
    several new experiments not in the former editions: J. Senex, 1719.
    [7] I. Newton, Opticks, or, a treatise of the reflections, refractions, inflections
    colours of light: Courier Corporation, 1979.
    105
    [8] M. Faraday, Experimental researches in electricity vol. 1: Read Books Ltd,
    2016.
    [9] J. C. Maxwell, A treatise on electricity and magnetism vol. 1: Clarendon
    press, 1881.
    [10] O. M. Stuetzer, ”Ion drag pressure generation,” Journal of Applied Physics,
    vol. 30, pp. 984-994, 1959.
    [11] M. Robinson, ”Movement of air in the electric wind of the corona discharge,”
    Transactions of the American Institute of Electrical Engineers, Part I: Com
    munication and Electronics, vol. 80, pp. 143-150, 1961.
    [12] Y.Chen,M.Z.Guo,K.S.Yang,andC.C.Wang,”EnhancedcoolingforLED
    lighting using ionic wind,” International Journal of Heat and Mass Transfer,
    vol. 57, pp. 285-291, 2013.
    [13] N. E. Jewell-Larsen, E. Tran, I. A. Krichtafovitch, and A. V. Mamishev, ”De
    sign and optimization of electrostatic fluid accelerators,” IEEE Transactions
    on Dielectrics and Electrical Insulation, vol. 13, pp. 191-203, 2006.
    [14] M. Molki and P. Damronglerd, ”Electrohydrodynamic enhancement of heat
    transfer for developing air flow in square ducts,” Heat Transfer Engineering,
    vol. 27, pp. 35-45, 2006.
    [15] Y.Y.Tsui,Y.X.Huang,C.C.Lan,andC.C.Wang,”Astudyofheattransfer
    enhancement via corona discharge by using a plate corona electrode,” Journal
    of Electrostatics, vol. 87, pp. 1-10, 2017.
    106
    [16] T. Y. Wen, T. T. Shen, H. C. Wang, and A. V. Mamishev, ”Optimization of
    wire-rod electrostatic fluid accelerators,” in Electronic Components and Tech
    nology Conference (ECTC), 2013 IEEE 63rd, 2013, pp. 240-246.
    [17] F.Yang, N.E.Jewell-Larsen, D.L.Brown, K.Pendergrass, andD.A.Parker,
    ”Corona driven air propulsion for cooling of electronics,” in XIIIth Interna
    tional Symposium on High Voltage Engineering, 2003.
    [18] A. Labergue, L. Leger, E. Moreau, G. Touchard, and J. P. Bonnet, ”Experi
    mental study of the detachment and the reattachment of an airflow along an
    inclined wall controlled by a surface corona discharge-application to a plane
    turbulentmixinglayer,”IEEE Transactions on Industry Applications,vol. 40,
    pp. 1205-1214, 2004.
    [19] L. Leger, E. Moreau, and G. G. Touchard, ”Effect of a DC corona electrical
    discharge on the airflow along a flat plate,” IEEE Transactions on Industry
    Applications, vol. 38, pp. 1478-1485, 2002.
    [20] J. R. Roth, ”Aerodynamic flow acceleration using paraelectric and peristaltic
    electrohydrodynamiceffectsofaoneatmosphereuniformglowdischargeplasma,”
    Physics of Plasmas, vol. 10, pp. 2117-2126, 2003.
    [21] J. R. Roth, D. M. Sherman, and S. P. Wilkinson, ”Electrohydrodynamic flow
    control with a glow-discharge surface plasma,” AIAA Journal, vol. 38, pp.
    1166-1172, 2000.
    [22] F.Bastien,”Acousticsandgasdischarges: applicationstoloudspeakers,”Jour
    nal of Physics D: Applied Physics, vol. 20, p. 1547, 1987.
    107
    [23] P. Béquin, V. Montembault, and P. Herzog, ”Modelling of negative point-to
    plane corona loudspeaker,” The European Physical Journal-Applied Physics,
    vol. 15, pp. 57-67, 2001.
    [24] M.S.MazzolaandG.M.Molen,”Modelingofadcglowplasmaloudspeaker,”
    TheJournaloftheAcousticalSocietyofAmerica,vol. 81,pp. 1972-1978,1987.
    [25] T. Y. Wen, I. Krichtafovitch, and A. V. Mamishev, ”Numerical study of elec
    trostatic precipitators with novel particle-trapping mechanism,” Journal of
    Aerosol Science, vol. 95, pp. 95-103, 2016.
    [26] T. Y. Wen, H. C. Wang, I. Krichtafovitch, and A. V. Mamishev, ”Novel elec
    trodesofanelectrostaticprecipitatorforairfiltration,”Journal of Electrostat
    ics, vol. 73, pp. 117-124, 2015.
    [27] T. I. J. Goodenough, P. W. Goodenough, and S. M. Goodenough, ”The effi
    ciencyofcoronawinddryinganditsapplicationtothefoodindustry,”Journal
    of Food Engineering, vol. 80, pp. 1233-1238, 2007.
    [28] F. C. Lai and C. C. Wang, ”Drying of partially wetted materials with corona
    wind and auxiliary heat,” in ESA Annual Meeting on Electrostatics Paper B,
    2008.
    [29] R. Nuccitelli, ”Endogenous ionic currents and DC electric fields in multicellu
    lar animal tissues,” Bioelectromagnetics, vol. 13, pp. 147-157, 1992.
    [30] J. S. Chang, P. A. Lawless, and T. Yamamoto, ”Corona discharge processes,”
    IEEE Transactions on Plasma Science, vol. 19, pp. 1152-1166, 1991.
    [31] M. Goldman, A. Goldman, and R. S. Sigmond, ”The corona discharge, its
    properties and specific uses,” Pure and Applied Chemistry, vol. 57, pp. 1353
    108
    1362, 1985.
    [32] L. B. Loeb, Basic processes of gaseous electronics: Univ of California Press,
    1960.
    [33] L. B. Loeb, Electrical coronas, their basic physical mechanisms: Univ of Cali
    fornia Press, 1965.
    [34] J. H. Lin, S. C. Lin, and F. C. Lai, ”Performance of an electrohydrodynamic
    gas pump fitted within a nozzle,” Journal of Electrostatics, vol. 91, pp. 1-8,
    2018.
    [35] Delta Fan Specifications. Available: http://www.delta.com.tw/product/cp/
    dcfans
    [36] M. Kimber, K. Suzuki, N. Kitsunai, K. Seki, and S. V. Garimella, ”Pressure
    and flow rate performance of piezoelectric fans,” IEEE Transactions on Com
    ponents and Packaging Technologies, vol. 32, pp. 766-775, 2009.
    [37] M.J.JohnsonandD.B.Go,”Recentadvancesinelectrohydrodynamicpumps
    operated by ionic winds: a review,” Plasma Sources Science and Technology,
    vol. 26, p. 103002, 2017.
    [38] H.C.Wang,N.E.Jewell-Larsen,andA.V.Mamishev,”Thermalmanagement
    of microelectronics with electrostatic fluid accelerators,” Applied Thermal En
    gineering, vol. 51, pp. 190-211, 2013.
    [39] P. Kulkarni, P. A. Baron, and K. Willeke, Aerosol measurement: principles,
    techniques, and applications: John Wiley Sons, 2011.
    109
    [40] S. Yagi and M. Tanaka, ”Mechanism of ozone generation in air-fed ozonisers,”
    Journal of Physics D: Applied Physics, vol. 12, p. 1509, 1979.
    [41] H.Witschi,”Ozone,nitrogendioxideandlungcancer: areviewofsomerecent
    issues and problems,” Toxicology, vol. 48, pp. 1-20, 1988.
    [42] 孔琴心, 刘广仁, and 李桂忱, ” 近地面臭氧浓度变化及其对人体健康的可能
    影响,” 气候与环境研究, vol. 4, pp. 61-66, 1999.
    [43] B. Komeili, J. S. Chang, G. D. Harvel, C. Y. Ching, and D. Brocilo, ”Flow
    characteristicsofwire-rodtypeelectrohydrodynamicgaspumpundernegative
    corona operations,” Journal of Electrostatics, vol. 66, pp. 342-353, 2008.
    [44] N. Takeuchi, K. Yasuoka, and J. S. Chang, ”Wire-rod type electrohydrody
    namic gas pumps with and without insulation cover over corona wire,” IEEE
    Transactions on Dielectrics and Electrical Insulation, vol. 18, 2011.
    [45] L. Li, S. J. Lee, W. Kim, and D. Kim, ”An empirical model for ionic wind
    generation by a needle-to-cylinder dc corona discharge,” Journal of Electro
    statics, vol. 73, pp. 125-130, 2015.
    [46] Y. Zhang, L. Liu, Y. Chen, and J. Ouyang, ”Characteristics of ionic wind in
    needle-to-ring corona discharge,” Journal of Electrostatics, vol. 74, pp. 15-20,
    2015.
    [47] E. D. Fylladitakis, A. X. Moronis, and K. Kiousis, ”Design of a prototype
    EHD air pump for electronic chip cooling applications,” Plasma Science and
    Technology, vol. 16, p. 491, 2014.
    [48] R.TirumalaandD.B.Go,”Multi-electrodeassistedcoronadischargeforelec
    trohydrodynamic flow generation in narrow channels,” IEEE Transactions on
    110
    Dielectrics and Electrical Insulation, vol. 18, 2011.
    [49] B. Adamczyk, B. Florkowska, and P. Pietrzak, ”Modelling of electric field
    distribution for partial discharges in air,” Zeszyty Naukowe Wydziału Elek
    trotechniki i Automatyki Politechniki Gdańskiej, 2015.
    [50] M. R. Bouazza, K. Yanallah, F. Pontiga, and J. H. Chen, ”A simplified for
    mulation of wire-plate corona discharge in air: Application to the ion wind
    simulation,” Journal of Electrostatics, vol. 92, pp. 54-65, 2018.
    [51] M. Rong, D. Liu, D. Wang, B. Su, X. Wang, and Y. Wu, ”A new structure
    optimization method for the interneedle distance of a multineedle-to-plane
    barrier discharge reactor,” IEEE Transactions on Plasma Science, vol. 38,
    pp. 966-972, 2010.
    [52] J.Wang, Y.X.Cai, W.W.Bao, H.X.Li, andQ.Liu, ”Experimentalstudyof
    high power LEDs heat dissipation based on corona discharge,” Applied Ther
    mal Engineering, vol. 98, pp. 420-429, 2016.
    [53] N. E. Jewell-Larsen, H. Ran, Y. Zhang, M. K. Schwiebert, K. A. H. Tessera,
    and A. V. Mamishev, ”Electrohydrodynamic (EHD) cooled laptop,” in Semi
    conductor Thermal Measurement and Management Symposium, 2009. SEMI
    THERM 2009. 25th Annual IEEE, 2009, pp. 261-266.
    [54] H. Y. Li, R. T. Huang, W. J. Sheu, and C. C. Wang, ”EHD enhanced heat
    transfer with needle-arrayed electrodes,” in Semiconductor Thermal Measure
    ment and Management Symposium, 2007. SEMI-THERM 2007. Twenty
    Third Annual IEEE, 2007, pp. 149-154.
    111
    [55] J.Darabi,M.Rada,M.Ohadi,andJ.Lawler,”Design,fabrication,andtesting
    of an electrohydrodynamic ion-drag micropump,” Journal of Microelectrome
    chanical Systems, vol. 11, pp. 684-690, 2002.
    [56] M. S. June, J. Kribs, and K. M. Lyons, ”Measuring efficiency of positive and
    negative ionic wind devices for comparison to fans and blowers,” Journal of
    Electrostatics, vol. 69, pp. 345-350, 2011.
    [57] A. A. Ramadhan, N. Kapur, J. L. Summers, and H. M. Thompson, ”Per
    formance and flow characteristics of miniature EHD air blowers for thermal
    management applications,” Journal of Electrostatics, vol. 93, pp. 31-42, 2018.
    [58] R. Antón, A. Bengoechea, Y. Masip, A. Rivas, J. C. Ramos, and G. S. Lar
    raona, ”Analysis of the performance reduction of axial fans in close proximity
    to EMC screens,” in Thermal, Mechanical Multi-Physics Simulation, and
    Experiments in Microelectronics and Microsystems (EuroSimE), 2010 11th
    International Conference on, 2010, pp. 1-7.
    [59] N. L. Gifford, A. G. Hunt, E. Savory, and R. J. Martinuzzi, ”Experimental
    study of lowpressure automotive cooling fan aerodynamics under blocked con
    ditions,” in Canada Society of Mechanical Engineers (CSME). Forum, 2006.
    [60] R.Grimes,M.Davies,J.Punch,T.Dalton,andR.Cole,”Modelingelectronic
    cooling axial fan flows,” Journal of Electronic Packaging, vol. 123, pp. 112
    119, 2001.
    [61] R. Grimes, E. D. Walsh, and P. Walsh, ”Active cooling of a mobile phone
    handset,” Applied Thermal Engineering, vol. 30, pp. 2363-2369, 2010.
    112
    [62] S. C. Lin and C. A. Chou, ”Blockage effect of axial-flow fans applied on heat
    sink assembly,” Applied Thermal Engineering, vol. 24, pp. 2375-2389, 2004.
    [63] F. W. Peek, Dielectric phenomena in high voltage engineering: McGraw-Hill
    Book Company, Incorporated, 1920.
    [64] N. E. Jewell-Larsen ”Electrostatic Fluid Accelerators for Thermal Manage
    ment ”, Department of Electrical Engineering, University of Washington.
    [65] 林唯耕,吳亮東, ” 風扇性能曲線操作點之測量方法與驗證,” presented at
    the 中國機械工程學會, 2007.
    [66] F. P. Bleier, Fan handbook: selection, application, and design: McGraW-Hill,
    1998.
    [67] Air Movement and Control Association, ”Laboratory Method of Testing Fans
    for Rating,” in Publication 210, ed, 1985.
    [68] P. J. Pritchard, J. W. Mitchell, and J. C. Leylegian, Fox and McDonald’s
    Introduction to Fluid Mechanics: John Wiley Sons, 2016.
    [69] D. C. Montgomery, Design and analysis of experiments: John Wiley Sons,
    2017.

    QR CODE