簡易檢索 / 詳目顯示

研究生: Cao Tri Thuc
Cao Tri Thuc
論文名稱: 基於電腦視覺的智慧軌跡生成演算法用於噴膠機器人系統
Computer Vision Based Intelligent Trajectory Generation Algorithms for Adhesive Spraying Robot for Shoe Manufacturing
指導教授: 林其禹
Chyi-Yeu Lin
口試委員: 李雨青
Yu-Ching Lee
李維楨
Wei-Chen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 73
中文關鍵詞: 機器人自動化系統電腦視覺噴膠路徑規劃軌跡規劃
外文關鍵詞: automated system, robot, glue spraying, computer vision, path planning, trajectory planning
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

製造製程自動化通過提供高精度和效率,徹底改變了包括鞋類行業在內的許多行業。本論文開發一套了專為鞋類噴膠製程客製的自動化直線機器人系統。該機器人系統配備噴膠機構,在使用電腦視覺技術產生噴膠軌跡下,將膠水精確地塗抹到鞋材面料上。該系統整合了由微控制器單元控制的硬體元件,包括馬達和噴嘴,以及用於影像處理和運動規劃的軟體模組。採用電腦視覺演算法來分析目標物體的空間配置。這些演算法與軟體模組的整合,有助於生成和優化不同形狀和尺寸工件的軌跡。此外,該軟體還具有存儲功能,可以存儲和調用每個工件的具體形狀和尺寸以供將來使用。.
本研究旨在展示在噴膠應用過程中採用自動化和電腦視覺的可行性和有效性,強調在包裝、汽車和電子製造等行業的潛在應用。實驗結果展示了該系統能夠實現精確且一致的塗膠,有助於提高鞋面噴膠的生產率和品質保證 .


Automation in manufacturing processes has revolutionized various industries, including the footwear sector, by offering unparalleled precision and efficiency. This thesis presents the development and implementation of an automated Cartesian coordinate robot tailored for the footwear manufacturing industry. The robot equipped with a spray glue mechanism, guided by the trajectory generated by computer vision technology, for the precise application of adhesive onto the shoe fabric pieces. The system integrates hardware components including motors, actuators, and a spray nozzle, controlled by a microcontroller unit, with software modules for image processing and motion planning. Computer vision algorithms are employed to analyze the spatial configuration of the target object. These algorithms, integrated with software modules, facilitate the generation and optimization of trajectories for workpieces of varying shapes and sizes. Moreover, the software incorporates memory functionality to store and recall the specific shape and size of each workpiece for future use.
The thesis aims to demonstrate the feasibility and effectiveness of employing automation and computer vision in adhesive application processes, highlighting potential applications in industries such as packaging, automotive, and electronics manufacturing. Experimental results showcase the system's ability to achieve precise and consistent glue application, contributing to enhanced productivity and quality assurance in manufacturing operations.

Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Review 3 1.2.1 Object matching using ICP 3 1.2.2 Robotic systems for shoe adhesive application 3 1.3 Summary 4 1.4 Scope of the thesis 5 1.5 Thesis Structure 6 Chapter 2 Computer Vision 8 2.1 Introduction 8 2.2 Camera calibration 8 2.2.1 Pinhole camera model 8 2.2.2 Zhang’s method for camera calibration 10 2.2.3 Forward Calculation 13 2.2.4 Inverse Calculation 14 2.2.5 Camera Calibration Result 16 2.3 Image Processing Procedure 18 2.4 Camera and robot position calibration 20 Chapter 3 Path And Trajectory Planning 24 3.1 Introduction 24 3.2 Path Planning 24 3.3 Spray Analyze 32 3.4 Path adjustment 36 3.5 Spray Flux Adjustment 39 3.6 Template 43 Chapter 4 Template Matching 44 4.1 Introduction 44 4.2 Hu Moment 44 4.3 Feature Length 48 4.4 Iterative Closest Point (ICP) 49 Chapter 5 Evaluation 53 5.1 Introduction 53 5.2 Method 54 5.3 Density Evaluation 55 Chapter 6 Conclusions and Future Works 56 6.1 Results 56 6.2 Conclusions 58 6.3 Future Works 59 References 60

[1] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE Trans Pattern Anal Mach Intell, vol. 14, no. 2, pp. 239–256, 1992, doi: 10.1109/34.121791.
[2] Y. Xie and J. Li, Path planning based on robot posture control in spraying. 2016. doi: 10.1109/ChiCC.2016.7554314.
[3] B. Nenovski and I. Nedelkovski, Defining a feature-rich end-to-end augmented reality platform for spatial exploration. 2018. doi: 10.20544/AIIT2018.P22.
[4] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans Pattern Anal Mach Intell, vol. 22, no. 11, pp. 1330–1334, 2000, doi: 10.1109/34.888718.
[5] E. Tola, “Multi-view 3D Reconstruction of a Scene Containing Independently Moving Objects,” Jan. 2005.
[6] K. S. Arun, T. S. Huang, and S. Blostein, “Least-squares fitting of two 3-D point sets. IEEE T Pattern Anal,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. PAMI-9, pp. 698–700, Oct. 1987, doi: 10.1109/TPAMI.1987.4767965.
[7] J. Lawrence, J. Bernal, and C. Witzgall, A Purely Algebraic Justification of the Kabsch-Umeyama Algorithm. 2019.
[8] S. Bastida and C.-Y. Lin, “Autonomous Trajectory Planning for Spray Painting on Complex Surfaces Based on a Point Cloud Model,” Sensors, vol. 23, p. 9634, Dec. 2023, doi: 10.3390/s23249634.
[9] W. Chen, X. Li, H. Ge, L. Wang, and Y. Zhang, “Trajectory Planning for Spray Painting Robot Based on Point Cloud Slicing Technique,” Electronics (Basel), vol. 9, p. 908, May 2020, doi: 10.3390/electronics9060908.
[10] D. Patel, H. Dodiya, and D. Lalwani, “Experimental investigation of CNC machining of elliptical pockets on AISI 304 stainless steel,” International Journal of Experimental Design and Process Optimisation, vol. 5, p. 94, Jan. 2016, doi: 10.1504/IJEDPO.2016.080530.
[11] B. Zhou and T. Tian, “A path planning method of lattice structural components for additive manufacturing,” The International Journal of Advanced Manufacturing Technology, vol. 116, pp. 1–24, Sep. 2021, doi: 10.1007/s00170-021-07092-5.
[12] F. Alonso-Marroquin and Y. Wang, “An efficient algorithm for granular dynamics simulations with complex-shaped objects,” Granul Matter, vol. 11, pp. 317–329, May 2008, doi: 10.1007/s10035-009-0139-1.
[13] M. Andulkar and S. Chiddarwar, “Incremental approach for trajectory generation of spray painting robot,” Industrial Robot: An International Journal, vol. 42, pp. 228–241, May 2015, doi: 10.1108/IR-10-2014-0405.
[14] M.-K. Hu, “Visual pattern recognition by moment invariants,” IRE Transactions on Information Theory, vol. 8, no. 2, pp. 179–187, 1962, doi: 10.1109/TIT.1962.1057692.
[15] C. Schütz and H. Hügli, “Free-form 3D object recognition,” Jan. 1995.

無法下載圖示
全文公開日期 2029/08/13 (校外網路)
全文公開日期 2029/08/13 (國家圖書館:臺灣博碩士論文系統)
QR CODE