簡易檢索 / 詳目顯示

研究生: 胡志允
Jr-Yun Hu
論文名稱: 橢面微透鏡於雷射與光纖耦合效率之研究
Ellipsoidal microlens for Laser Diode to Single-Mode Fiber coupling
指導教授: 趙振綱
Ching-Kong. Chao
楊錫杭
Hsiharng Yang
口試委員: 曾垂拱
Chwei-Goong Tseng
何智廷
Chi-Ting Ho
張瑞慶
Rwei-Ching Chang
洪仕育
Shih-Yu Hung
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 108
中文關鍵詞: 半導體雷射光纖橢面微透鏡光耦合效率
外文關鍵詞: Optical fiber, fiber-lens, Thermal reflow, Coupling efficiency
相關次數: 點閱:262下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文旨在提出將橢面透鏡置於光纖端面上,並利用透鏡的聚光特性,增加半導體雷射光強度於光纖之光訊號耦光效率,以減少光纖光訊號之對位損失。首先採用光學模擬軟體,模擬橢面透鏡對於光纖的耦合效率。利用田口品質工程法,將影響光耦合之各種參數中找出最佳參數值,並以該參數值做出符合模擬結果之光纖橢面透鏡輪廓。接著微影製程研製橢面微透鏡之模仁成型,隨即將橢面光阻透鏡進行微電鑄,得到橢面微透鏡凹模,再以PDMS為母材得到該橢面微透鏡。最後利用Epoxy使與橢面微透鏡與光纖黏合,達成於光纖端面具橢面微透鏡之目的。因此製程開發可開啟光纖微透鏡之量產化濫觴,並驗證其橢面微透鏡光耦效率可達42.7%。
於此利用波動光學繞射理論作為半導體雷射與光纖耦光數學模型,根據此模型。可計算出光耦合效率、光纖對位容許度與光纖對位偏移容許度;並利用該模型之相關參數,將半導體雷射之橢圓場型經由橢面微透鏡轉換為圓形場型。而其最佳理論光耦合效率可達77%,且其光纖對位容許較現有光纖微透鏡製程有較低靈敏度,因而可提升光纖對位之製程良率。因橢面微透鏡製程開發加以理論推導,得以加以設計而成光纖微透鏡連接器模組化。


This article demonstrates the effective coupling between a single- mode fiber (SMF) and an edge emitting laser diode (LD) using an ellipsoidal microlens on the tip of the SMF. The optical simulation software “TracePro” and the “Taguchi method” were used to search for the optimal lens design and coupling efficiency parameters for the LD to SMF. The ellipsoidal microlens was fabricated using photolithography, thermal reflow, mold electroforming and polydimethylsiloxane (PDMS) injection. UV-curing glue was then smeared and exposed to fasten the lens onto the fiber. Through those processes, the end of optical fiber will have an ellipsoidal microlens for LD to fiber coupling. Due to the process developed, it is suit for mass production for microlens on the end of fiber. And the coupling efficiency of LD to SMF can achieve to 42.7%.
A scalar diffraction analysis was used to calculate the coupling efficiency and align tolerance. Due to the phase transformation caused by the ellipsoidal microlens, the field distribution pattern of laser diode will change from elliptic to circle. Form this theory analysis, the optimal design for coupling efficiency can achieved to 77% and with a high alignment tolerance than the other methods for fiberlens. Per the microlens processes developed with theory analysis, it may design a fiberlens connector module for LD to SMF coupling.

摘要.………………………………………………………………………I ABSTRACT…………………………………………………………….II 誌謝…………………………………………………………………….IV 目錄…………………………………………………………………….III 表目錄…………………………………………………………………...V 圖目錄…………………………………………………………………..VI 符號索引……………………………………………………………...VIII 第一章 導論……………………………………………………………..1 1.1前言………………………………………………………………..1 1.2研究動機..…………………………………………………………4 1.3文獻探討…………………………………………..………………5 1.4章節介紹…………………………………………………………20 第二章 理論分析……………….………………………………...……21 2.1光耦合理論模型…………………………………………………22 2.2 模擬結果………………………………………………………...33 2.2-1光耦合效率………………………………………………….33 2.2-2 對位容差……………………………………………………36 2.2-3 繞射圖樣……………………………………………………37 第三章 光學模擬建構……………….….……………………………..41 3.1 雷射發光模組…………………………………………………...41 3.2 橢面微透鏡概念設計…………………………………………...44 3.3 田口方法………………………………………………………...45 3.4 問題描述………………………………………………………...47 第四章 製程實驗規劃……………….…………………….…………..55 4.1 前言…………………………………………………………..….55 4.2 橢球微透鏡設計………………………………………………...56 4.3 橢球微透鏡陣列之實驗方法與步驟…………………………...58 4.3-1 光罩設計與顯影製程………………………………………58 4.3-2 不完全熱熔製程……………………………………………64 4.4 電鑄製模製程…………………………………………………...66 4.5 PDMS微透鏡翻模製程…………………………………………68 4.6 PDMS微透鏡接合製程…………………………………………78 4.7 光耦合效率測量架設…………………………………………...72 第五章 實驗結果分析與討論……………….…………………….…..73 5-1 微透鏡結構模仁………………………………………………...73 5.2 微電鑄模具……………………………………………………...76 5.3 PDMS橢球微透鏡複製………………………………………….80 5.4 PDMS微透鏡接合……………………………………………….84 5.5 光耦合效率量測………………………………………………...85 第六章 結論與未來發展……………….……………………………...86 6.1 結論……………………………………………………………...86 6.2 未來工作………………………………………………………...88 參考文獻………………………………………………………………..90 作者簡介………………………………………………………………..95 附錄A 有機清洗槽使用方法及注意事項………………………….…97 附錄B PM490旋轉塗佈機使用方法及注意事項…………………….98 附錄C EV620曝光機使用方法及注意事項………………………....103 附錄D SEM工作原理、使用方法及注意事項………………………106

[1] J. S. Leggatt, M. C. Hutley, “Microlens arrays for interconnect of single-mode fiber arrays” Electron. Lett., vol. 27, pp.238-240, 1991.
[2] P. C. Clemens, R. M¨arz, A. Reichelt, and H. W. Schneider, “Flat-field spectrograph in SiO2/Si,” IEEE Photon. Technol. Lett., vol. 4, pp.886–887, 1992.
[3] P. C. Clemens, G. Heise, R. M¨arz, H. Michel, A. Reichelt, and H. W.Schneider, “8-Channel optical demultiplexer realized as SiO2/Si flat-field spectrograph,” IEEE Photon. Technol. Lett., vol. 6, pp. 1109–1111,1994.
[4] K. Liu, C.-S. Li, B. Pezeshki, T. Schrans, A. E. Stevens, and F. Tong, “Hybrid optoelectronic digitally tunable receiver,” Proc. SPIE Components for Wavelength Division Multiplexing, E. S. Koteles, Ed.,vol. 2402, pp. 104–114, 1995.
[5] M. Fallahi, K. A. McGreer, A. Delˆage, I. M. Templeton, F. Chatenoud, and R. Barber, “Grating demultiplexer integrated with MSM detector array in InGaAs/AlGaAs/GaAs for WDM,” IEEE Photon. Technol. Lett., vol. 5, pp. 794–797, 1993.
[6] J. B. D. Soole, A. Scherer, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Monolithic InP/InGAAsP/InP grating spectrometer for the 1.48–1.56μm wavelength range,” Appl. Phys. Lett., vol. 58, pp.1949–1951, 1991.
[7] C. Cremer, G. Ebbinghaus, G. Heise, R. M¨uller-Nawrath, M. Schienle, and L. Stoll, “Grating spectrograph in InGaAsP/InP for dense wavelength division multiplexing,” Appl. Phys. Lett., vol. 59, pp. 627–629, 1991.
[8] C. Cremer, N. Emeis, M. Schier, G. Heise, G. Ebbinghaus, and L. Stoll, “Grating spectrograph integrated with photodiode array in InGaAsP/InGaAs/InP,” IEEE Photon. Technol. Lett., vol. 4, pp. 108–110, 1992.
[9] S. M. Ojha, G. H. B. Thompson, C. G. Cureton, C. B. Rogers, S. J. Clements, M. Asghari, and I. H. White, “Demonstration of low loss integrated InGaAsP/InP demultiplexer device with low polarization sensitivity,” Electron. Lett., vol. 29, pp. 805–807, 1993.
[10] J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, C. Caneau, R. Bhat, and M. A. Koza, “High speed monolithic WDM detector for 1.5μm fiber band,” Electron. Lett., vol. 31, pp. 1276–1277, 1995.
[11] J. J. He, B. Lamontagne, A. Delˆage, L. Erickson,M. Davies, and E. S. Koteles, “Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/InP,” J. Lightwave Technol., vol. 16, No.4, pp. 631–638, 1998.
[12] H. Kuwahara, M. Sasaki, and N. Tokoyo, “Efficient coupling from semiconductor lasers into single-mode fibers with tapered Hemispherical ends, ” Applied Optics, vol.19, pp.2578-2582, 1980.
[13] J. I. Yamada, Y. Murakami, J. I. Sakai, and .T. Kimura, “Characteristics of a hemispherical microlens for coupling between a semiconductor laser and single -mode fiber,” IEEE Journal of Quantum Eelectronics, Vol. QE-16, no. 10, pp. 1067–1072, 1980.
[14] W. Bludau and R. Rossberg, “Low-loss laser-to-fiber coupling with negligible optical feedback, ” Journal of Lightwave Technology, vol. LT-3, pp.294-302, 1985.
[15] A. Kotsas, H. Ghafouri Shiraz, and T. S. M. Maclean, “Microlens fabrication on single-mode fibres for efficient coupling from laser diodes, ”Optical and Quantum Electronics, vol. 23, pp.367-378, 1991.
[16] H. M. Yang, D. C. Jou, M. H. Chen, S. H. Wu, and W. H. Cheng, “An optimum approach for fabrication of tapered hemispherical-end fiber for laser module packaging,” Journal of Electronic Materials, vol. 30, pp.271–274, Mar. 2001.
[17] H. M. Yang, S. Y. Huang, C. W. Lee, T. S. Lay, and W. H. Cheng, “High-coupling tapered hyperbolic fiber microlens and taper asymmetry effect, ” Journal of Lightwave Technology, vol.22, pp.1395-1401, 2004.
[18] K. R. Kim, S. Chang, and K. Oh, “Refractive microlens on fiber using uv-curable fluorinated acrylate polymer by surface-tension, ” IEEE Photonics Technology Letters, vol.15, pp.1100-1102, 2003.
[19] W. R. Cox, T. Chen, and D. J. Hayes, “Micro-optics fabrication by ink-jet printing.” Optics & Photonics News, pp.32-35, 2001.
[20] H. M. Presby and C. R. Giles, “Asymmetric fiber microlenses for efficient coupling to elliptical laser beams, ” IEEE Photonics Technology Letters, vol. 5, pp.184-186, 1993.
[21] V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, “Efficient power coupling from a 980-nm, broad-area laser to a single-mode fiber using a wedge-shaped fiber endface, ” Journal of Lightwave Technology, vol.8, pp.1313-1318, 1990.
[22] H. Yoda and K. Shiraishi, “A new scheme of a lensed fiber employing a wedge-shaped graded-index fiber tip for the coupling between high-power laser diodes and single-mode fiber, ” Journal of Lightwave Technology, vol.19, pp.1910-1917, 2001.
[23] H. Yoda, T. Sakurai, A. Ogura, and K. Shiraishi, ” A wedge-shaped GIF for coupling between an SMF and a high-power LD having ultra-high aspect ratio, ”Optical Communication, 2001, ECOC '01. 27th European Conference, vol.3, pp.418-419, 2001.
[24] H. Yoda, T. Endo, and K. Shiraishi, “Cascaded GI-fiber chips with a wedge-shaped end for the coupling between an SMF and a high-power LD with large astigmatism,” Journal of Lightwave Technology, vol. 20, pp.1545-1548, 2002.
[25].K. Shiraishi, H. Yoda, T. Endo, and I. Tomita,” A lensed GIO fiber with a long working distance for the coupling between laser diodes with elliptical fields and single-mode fibers.” IEEE Photonics Technology Letters, vol. 16, No. 4, pp.1104-1106, 2004.
[26] R. A. Modavis and T. W. Webb, “Anamorphic Microlens for Laser Diode to Single-Mode Fiber Coupling, ” IEEE Photonics Technology Letters, vol.7, pp.798-800, 1995.
[27] S. M. Yeh, Y. K. Lu, S.Y. Huang, H. H. Lin, and C. H. Hsieh, “A novel scheme of lens fiber employing a quadrangular-pyramid-shape fiber endface for coupling between high power laser diodes and single-mode fiber,” Journal of Lightwave Technology, Vol. 22, No. 5, pp.1374-1379, 2004.
[28] S. M. Yeh, S. Y. Huang and W. H. Cheng., ”A new scheme of conical -wedge- shaped fiber endface for coupling between high-power laser diodes and single- mode fibers, ” IEEE Journal of Lightwave Technology, Vol. 23, No. 4, pp.1781-1786, 2005.
[29] Y. K. Lu, Y.C. Tsai., Y.D. Liu., S.M. Yeh., C.C. Lin., and W.H. Cheng., "Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes," Optical. Express, Vol. 15, No. 4, pp. 1434-1442, 2007.
[30] J. John, T. S. M. Maclean, H. G hafouri-S hi raz, and J. Niblett., “Matching of single-mode fibre to laser diode by microlenses at 1.5 μm wavelength.” IEE floc.-Oproelectron., Vol. 141, No. 3, pp.178-184, 1994.
[31] R. P. Ratowsky, L. Yang, R. J. Deri, K. W. Chang, J. S. Kallman, and G. Trott., “Laser diode to single-mode fiber ball lens coupling efficiency: full-wave calculation and measurements.” Applied Optics, Vol. 36, No. 15, pp 3435-3438, 1997.
[32] H. Kogelnik., “Coupling and conversion coefficients for optical modes in quasioptics,” in Microwave Research Institute Symposia Series. New York: Polytechnic, Vol.14, pp. 333-347, 1964.
[33] Joseph W. Goodman., Introduction to Fourier Optics. Englewood, Colo., Roberts & Co. 2005.
[34] Milton Katz., Introduction to Geometric Optics. World Scientific, River Edge, NJ, 2002.
[35] microPEP Inc. Data sheets, One Catamore Boulevard., East Providence, RI 02914.
[36] Jia-Jin Jason Chen., National Cheng Kung University, Institute of Biomedical Engineering., Project “The BOLD Effect for fNIRS.”

QR CODE