簡易檢索 / 詳目顯示

研究生: 林雅婷
Ya-Ting Lin
論文名稱: 開發自動化光學量測透明黏合晶片內微流道尺度之系統
Development of an Automated Optical Inspection System for Measuring Dimension of Microchannel in Transparent Bonded Chips
指導教授: 陳品銓
Pin-Chuan Chen
鄧昭瑞
Geo-Ry Tang
口試委員: 陳亮光
Liang-kuang Chen
林鼎晸
Ding-Zheng Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 115
中文關鍵詞: 微流道晶片尺度量測機器視覺自動光學檢測系統
外文關鍵詞: Microchannel Chip, Dimension Measurement, Machine Vision, Automated Optical Inspection
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對透明晶片在黏合後對於微流道尺度量測之需求,開發以機器視覺為核心之自動化光學量測系統。系統硬體主要包含五百萬畫素CMOS黑白工業相機、一倍遠心鏡頭、步進馬達、步進馬達驅動器、以及運動控制卡等;系統軟體則是使用NI LabVIEW 2018 SP1將整個自動量測流程進行整合。透過人機介面之設計,操作者只需要進行少數基本參數設定與簡易的按鍵操作,系統將會自動完成透明黏合晶片內全區域直線微流道尺度量測。本研究開發之系統可以達到量測步驟簡單、快速量測、高準確度、高重複性、以及環境限制少等目標。實驗中,樣本的微流道截面為矩形(寬度300 μm、深度300 μm),流道路徑為直線,總長為46 mm,扣除出入口後能夠量測的完整長度為44 mm。實驗結果顯示,本研究之系統可以在20秒內完成量測,得到等距之45個截面尺度,量測微流道寬度以及深度之重複性皆在2 μm以內。此外,實驗中使用工具顯微鏡量測微流道的寬度及深度並作為標準尺度,將標準尺度與系統量測數據進行比對後,顯示系統量測微流道寬度及深度的準確度皆在2%以內。


    This study aims at the requirement of microchannel measurement of transparent chips after bonding, and develops an automated optical measurement system with machine vision as the core. The system hardware mainly includes a 5MP CMOS monochrome industrial cameras, 1X telecentric lens, stepper motor, stepper motor driver, motion controller device, etc. The system software uses NI LabVIEW 2018 SP1 to integrate the entire automatic measurement process. By designing the human machine interface, the operator can easily control the machine to automatically measure the dimension of the entire linear microchannel. The development of the system can achieve simple measurement steps, rapid measurement, high accuracy, high repeatability, and less environmental restriction. In the experiment, the cross-sectional shape of the microchannel chip sample is rectangular (width 300 μm, depth 300 μm), the flow path is a straight line, the total length is 46 mm, and the length which can be measured is 44 mm. The experimental results show that the system can complete the measurement within 20 seconds and obtain 45 microchannel cross-sectional dimensions. The repeatability of the system to measure the width and depth of the microchannel are within 2 μm. In addition, the tool microscope was used to measure the width and depth of the microchannel as the standard dimension. After comparison, the accuracy of the measured width and depth of the system are within 2%.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖索引 VII 表索引 X 第一章 緒論 1 1.1 研究背景 1 1.1.1 微流道晶片 2 1.1.2 機器視覺 3 1.1.3 自動光學檢測系統 4 1.2 研究動機與目的 5 1.3 研究方法 7 1.4 論文架構 10 第二章 文獻回顧 11 2.1 微流道晶片製程之相關文獻 11 2.1.1 製造微流道晶片之高分子材料 11 2.1.2 高分子材料上的微流道製造技術 12 2.1.3 高分子微流道晶片的黏合技術 12 2.2 量測透明黏合晶片內微流道尺度之相關文獻 13 第三章 微流道晶片製程與微流道尺度量測技術 19 3.1 微流道晶片之製程與架構 19 3.2 黏合晶片內微流道寬度及深度量測技術 20 3.2.1 利用司乃耳定律對於透明微流道晶片截面進行光路徑模擬 22 3.2.2 建立演算法 24 3.3.3 透明黏合晶片內全區域直線微流道尺度量測方法 28 第四章 系統架構 30 4.1 光學照明取像模組 31 4.1.1 相機 32 4.1.2 鏡頭 35 4.1.3 比例因子換算方法 37 4.1.4 光源 39 4.2 運動機構模組 45 4.2.1 垂直攝影機架 45 4.2.2 X軸電動移動平台與Y軸電動平台 45 4.2.3 晶片放置平台 46 4.3 電控系統 47 4.4 視覺軟體工具 48 4.4.1 軟體介紹 49 4.4.2 影像處理 50 4.4.3 人機介面以及程式處理流程 57 第五章 實驗結果 63 5.1 透明微流道晶片 64 5.2 尋找起始量測區域 64 5.3 相機架設角度之限制 66 5.4 聚焦位置以及有無遮光對於系統量測尺度的影響 68 5.4.1 聚焦位置說明 68 5.4.2 遮光原因說明 69 5.4.3 探討聚焦在不同位置及有無遮光對於系統量測尺度的影響 71 5.5 量測重複性 73 5.6 工具顯微鏡驗證方法 75 5.6.1 利用工具顯微鏡量測微流道寬度方法 75 5.6.2 利用工具顯微鏡量測微流道深度方法 77 5.7 量測準確度 78 第六章 結論與未來展望 81 6.1 研究成果 82 6.2 未來展望 84 參考文獻 85 附錄一 89 附錄二 90 附錄三 91 附錄四 92 附錄五 102

    [1] Reports and Data, “Biochip market by product (DNA chip, lab-on-chip, protein chip, and others), by technology (microfluidics and microarray), by substrate materials, by applications and by end users and segment forecasts, 2016-2026,” https://www.reportsanddata.com/report-detail/bio
    chip-market, 2019.
    [2] R. P. Feynman, “There is plenty of room at the bottom,” Caltech Engineering and Science, Vol. 23, pp. 22-36, 1960.
    [3] 力丞儀器科技有限公司,"機械視覺介紹/AOI介紹",檢自http://apisc.com/aoi-introduction.htm。
    [4] O. Hecht, and G. Dishon, “Automatic optical inspection (AOI) ,” In 40th Conference Proceedings on Electronic Components and Technology, IEEE, pp. 659-661, 1990.
    [5] J. Hwang, Y. H. Cho, M. S. Park, and B. H. Kim, “Microchannel fabrication on glass materials for microfluidic devices,” International Journal of Precision Engineering and Manufacturing, Vol. 20, No. 3, pp. 479-495, 2019.
    [6] R. Dong, Y. Liu, L. Mou, J. Deng, and X. Jiang, “Microfluidics‐Based Biomaterials and Biodevices,” Advanced Materials, pp. 1805033, 2018.
    [7] F. Kotz, K. Arnold, S. Wagner, W. Bauer, N. Keller, T. M. Nargang, et al., “Liquid PMMA: A high resolution polymethylmethacrylate negative photoresist as enabling material for direct printing of microfluidic chips,” Advanced Engineering Materials, Vol. 20, No. 2, pp. 1700699, 2018.
    [8] L. Yang, L. Zhu, Z. Li, and B. Lu, “Fabrication of PDMS microfluidic chips used in rapid diagnosis by micro jetting,” Multimedia Tools and Applications, Vol. 77, No. 3, pp. 3761-3774, 2018.
    [9] T. Nguyen, S. H. Jung, M. S. Lee, T.-E. Park, S.-K. Ahn, and J. H. Kang, “Robust chemical bonding of PMMA microfluidic devices to porous PETE membranes for reliable cytotoxicity testing of drugs,” Lab on a Chip, Vol. 19, No. 21, pp. 3706-3713, 2019.
    [10] Z. Hu, X. Chen, Z. Yao, X. Chen, B. Fu, and L. Zhang, “Fabricated polycarbonate microchannel with different films using CO 2 laser beam of two-pass for microfluidic chip,” Microsystem Technologies, Vol. 24, No. 5, pp. 2325-2331, 2018.
    [11] J. Chen, W. Wang, W. Ji, S. Liu, Q. Chen, B. Wu, et al., “Silicon based solvent immersion imprint lithography for rapid polystyrene microfluidic chip prototyping,” Sensors and Actuators B: Chemical, Vol. 248, pp. 311-317, 2017.
    [12] R. Lopes, R. O. Rodrigues, D. Pinho, V. Garcia, H. Schütte, R. Lima, et al., “Low cost microfluidic device for partial cell separation: Micromilling approach,” In 2015 IEEE International Conference on Industrial Technology (ICIT), IEEE, pp. 3347-3350, 2015.
    [13] D. Konstantinou, A. Shirazi, A. Sadri, and E. W.K. Young, “Combined hot embossing and milling for medium volume production of thermoplastic microfluidic devices,” Sensors and Actuators B: Chemical, Vol. 234, pp. 209-221, 2016.
    [14] J. Guo, K. Liu, Z. Wang, and G. L. Tnay, “Magnetic field-assisted finishing of a mold insert with curved microstructures for injection molding of microfluidic chips,” Tribology International, Vol. 114, pp.306-314, 2017.
    [15] Y. Li, P. Wu, Z. Luo, Y. Ren, M. Liao, L. Feng, et al., “Rapid fabrication of microfluidic chips based on the simplest LED lithography,” Journal of Micromechanics and Microengineering, Vol. 25, No. 5, pp. 055020, 2015.
    [16] T.-F. Hong, W.-J. Ju, M.-C. Wu, C.-H. Tai, C.-H. Tsai, and L.-M. Fu, “Rapid prototyping of PMMA microfluidic chips utilizing a CO 2 laser,” Microfluidics and Nanofluidics, Vol. 9, No. 6, pp. 1125-1133, 2010.
    [17] C. Chung, Y.-J. Chen, P.-C. Chen, and C.-Y. Chen, “Fabrication of PDMS passive micromixer by lost-wax casting,” International Journal of Precision Engineering and Manufacturing, Vol. 16, No. 9, pp. 2033-2039, 2015.
    [18] N. C. Nayak, C. Y. Yue, Y. C. Lam, and Y. L. Tan, “Thermal bonding of PMMA: Effect of polymer molecular weight,” Microsystem Technologies, Vol. 16, No. 3, pp.487, 2010.
    [19] P.-C. Chen, Y.-M. Liu, and H.-C. Chou, “An adhesive bonding method with microfabricating micro pillars to prevent clogging in a microchannel,” Journal of Micromechanics and Microengineering, Vol. 26, No. 4, pp.045003,2016.
    [20] M. D.Wan, A. Sadri, and E. W. K. Young, “Liquid phase solvent bonding of plastic microfluidic devices assisted by retention grooves,” Lab on a Chip, Vol. 15, No. 18, pp. 3785-3792, 2015.
    [21] J. Liu, H. Qiao, C. Liu, Z. Xu, Y. Li, and L. Wang, “Plasma assisted thermal bonding for PMMA microfluidic chips with integrated metal microelectrodes,” Sensors and Actuators B: Chemical, Vol. 141, No. 2, pp. 646-651, 2009.
    [22] R. J. Holmes, C. McDonagh, J. A. D. McLaughlin, S. Mohr, N. J. Goddard, and P. R. Fielden, “Microwave bonding of poly (methylmethacrylate) microfluidic devices using a conductive polymer,” Journal of Physics and Chemistry of Solids, Vol. 72, No. 6, pp. 626-629, 2011.
    [23] X. Jiang, S. Chandrasekar, and C. Wang, “A laser microwelding method for assembly of polymer based microfluidic devices,” Optics and Lasers in Engineering, Vol.66, pp. 98-104, 2015.
    [24] Z. Zhang, X. Wang, Y. Luo, S. He, and L. Wang, “Thermal assisted ultrasonic bonding method for poly (methyl methacrylate)(PMMA) microfluidic devices,” Talanta, Vol. 81, No. 4-5, pp. 1331-1338, 2010.
    [25] J. Maurer, P. Tabeling, P. Joseph, and H. Willaime, “Second-order slip laws in microchannels for helium and nitrogen,” Physics of Fluids, Vol. 15, pp. 2613-2621, 2003.
    [26] 王凱弘(2009),"應用光學讀取頭裝置量測微流道深度",國立中興大學機械系工程研究所碩士論文。
    [27] R. Kolekar, D. Torgerson, J. Viner, B. Gale, and T Ameel, “Depth measurement in fully enclosed microchannels using laser interferometry,” Measurement Science and Technology, Vol. 23, 2012.
    [28] D. R. Reyes, M. Halter, J. Hwang, “Dimensional metrology of lab‐on‐a‐chip internal structures: a comparison of optical coherence tomography with confocal fluorescence microscopy,” Journal of Microscopy, Vol. 259, No. 1, pp. 26-35, 2015.
    [29] 朱法軒(2018),"開發量測微流道尺寸之光學檢測系統",國立台灣科技大學機械工程系碩士論文。
    [30] P.-C. Chen, L. H. Duong, “Novel solvent bonding method for thermoplastic microfluidic chips,” Sensors and Actuators B: Chemical, Vol. 237, pp. 556-562, 2016.
    [31] R. Hoogenboom, C. R. Becer, C. Guerrero-Sanchez, S. Hoeppener, and U. S. Schubert, “Solubility and thermoresponsiveness of PMMA in alcohol-water solvent mixtures,” Australian Journal of Chemistry, Vol. 63, No. 8, pp. 1173-1178, 2010.
    [32] N. Tanio, and T. Nakanishi, “Physical aging and refractive index of poly (methyl methacrylate) glass,” Polymer Journal, Vol. 38, No. 8, pp.814-818, 2006.
    [33] 德商兆鎂新有限公司,檢自https://www.theimagingsource.tw/。
    [34] MORITEX Corporation,檢自https://www.moritex.com/。
    [35] 新亞洲儀器股份有限公司,"機器視覺「光源」 Q&A",檢自http://www.photon-tech.com.tw/support?id=197。
    [36] 曜宇科技股份有限公司,檢自http://www.exlite.com/。
    [37] National Instruments,檢自https://www.ni.com/zh-tw.html。
    [38] National Instruments,"善用圖形化程式設計:NI LabVIEW的優點",檢自http://www.ni.com/white-paper/14556/zht/。
    [39] 鐘國亮,「影像處理與電腦視覺」,東華書局,第六版。
    [40] S. J. Miller, “The Method of Least Squares,” Mathematics Department, Brown University, 2006.

    無法下載圖示 全文公開日期 2025/08/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE