簡易檢索 / 詳目顯示

研究生: BUI VAN TRINH
BUI VAN TRINH
論文名稱: 應用增強學習機制之灰狼優化演算法於考慮閥點效應之大規模經濟調度
A Hybrid Grey Wolf Optimization Algorithm using Robust Learning Mechanism for Large Scale Economic Load Dispatch with Valve-Point Effects
指導教授: 郭政謙
Cheng-Chien Kuo
口試委員: 張宏展
Hong-Chan Chang
李俊耀
Chun-Yao Lee
楊念哲
Nien-Che Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 67
中文關鍵詞: 優化算法經濟負荷調度灰狼優化電力系統運行
外文關鍵詞: Optimization Algorithm, Economic Load Dispatch, Grey Wolf Optimization, Power System Operation
相關次數: 點閱:250下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出了一種新的灰狼優化混合算法(GWO),結合強健型學習機制,解決了大規模經濟負荷調度(ELD)問題。強健型學習灰狼優化(RLGWO)算法模擬了灰狼在自然界中的狩獵行為和社會等級,並通過基於調整搜索方向和相反學習強健容忍性來加強。該技術可以有效地防止代理搜索陷入局部最優解,也可以產生可能的候選解以獲得可行的解決方案。發電機的若干限制,例如發電限制,區域需求,閥門點效應和傳輸損耗都被考慮用於實際操作。已經使用五個測試系統來評估所提出的算法在解決ELD問題中的有效性和強健性。模擬結果與以往的文獻相比,明顯地顯示了提出的方法在燃料成本和計算效率方面找到更好解的優越性和可行性


    This research proposed a new hybrid algorithm of grey wolf optimization (GWO) integrated with
    robust learning mechanism to solve the large scale economic load dispatch (ELD) problem. The
    robust learning grey wolf optimization (RLGWO) algorithm imitate the hunting behavior and
    social hierarchy of grey wolves in nature and reinforced by robust tolerant based adjust searching
    direction and opposite based learning. This technique could effectively prevent search agents
    trapping into local optimum but also generate potential candidate to obtain feasible solutions.
    Several constraints of power generators such as generation limits, local demand, and valve point
    loading effect and transmission losses are all considered for practical operations. Five test systems
    have been used to evaluate the effectiveness and robustness of the proposed algorithm in solving
    ELD problem. The simulation results distinctly reveal the superiority and feasibility of RLGWO
    to find the better solution in term of fuel cost and computational efficiency when comparing with
    previous literatures.

    ACKNOWLEDGEMENTS....................................................................................................................I LIST OF TABLES................................................................................................................................IV LIST OF FIGURES...............................................................................................................................V ABSTRACT..........................................................................................................................................VI CHAPTER 1: INTRODUCTION ......................................................................................................... 1 CHAPTER 2: PROBLEM FORMULATION ...................................................................................... 4 2.1 Introduction ................................................................................................................................. 4 2.2 Objective Function....................................................................................................................... 4 2.3 Equality and Inequality Constraints ........................................................................................... 6 CHAPTER 3: GWO ALGORITHM .................................................................................................... 9 3.1 Inspiration.................................................................................................................................... 9 3.2 Mathematical model and algorithm .......................................................................................... 11 3.2.1 Social hierarchy................................................................................................................... 11 3.2.2 Encircling prey .................................................................................................................... 12 3.2.3 Hunting................................................................................................................................ 14 3.2.4 Attacking prey (exploitation) .............................................................................................. 16 3.2.5 Search for prey (exploration).............................................................................................. 17 CHAPTER 4: ROBUST LEARNING BASED GWO ALGORITHM (RLGWO) ............................ 19 4.1 Robust tolerant based adjust searching direction mechanism (RTASDM) ............................. 19III 4.2 Opposition based learning for candidate generation strategy .................................................. 26 4.3 RLGWO algorithm for Economic Load Dispatch .................................................................... 29 4.4 Simulation Results and Discussion ............................................................................................ 30 4.4.1 Test systems and Results ..................................................................................................... 31 4.4.2 Comparative study .............................................................................................................. 44 CHAPTER 5. CONCLUSION AND FUTURE WORK..................................................................... 45 REFERENCES.................................................................................................................................... 46

    [1] B. H. Chowdhury and S. Rahman, "A review of recent advances in economic dispatch,"
    IEEE Trans. Power Syst, vol. 5, no. 4, p. 1248–1259, 1990.
    [2] A. J. Wood and B. F. Wollenberg, Power Generation, Operation and Control, New York:
    Wiley, 1984.
    [3] K. Y. Lee et al., "Fuel cost minimize at ion for both real- and reactive power dispatches,"
    Proc. Inst. Elect. Eng., Gen., Tranm., Distrib.., vol. 131, no. 3, p. 85–93, 1984.
    [4] C. L. Chen and C. L. Wang, "Branch-and-bound scheduling for thermal generating units,"
    IEEE Trans. Energy Convers., vol. 8, no. 2, p. 184–189, 1993.
    [5] A. M. Sasson, "Nonlinear programming solutions for load-flow, minimum-loss, and
    economic dispatching problems," IEEE Trans. Power App. Syst., Vols. PAS-88, no. 4, p.
    399–409, 1969.
    [6] Z. X. Liang and J. D. Glover, "A zoom feature for a programming solution to economic
    dispatch including transmission losses," IEEE Trans. Power Syst., vol. 7, no. 3, p. 544–550,
    1992.
    [7] K. P. Wong and C. C. Fung, "Simulated annealing based economic dispatch algorithm,"
    Proc. Inst. Elect. Eng., Gen., Tranm., Distrib.,, vol. 140, no. 6, p. 509–515, 1993.47
    [8] D. C. Walters and G. B. Sheble, "Genetic algorithm solution of economic dispatch with valve
    point loading," IEEE Trans. Power Syst., , vol. 8, no. 3, p. 1325–1331, 1993.
    [9] P. H. Chen and H. C. Chang, "Large-Scale economic dispatch by genetic algorithm," IEEE
    Trans. Power Syst., vol. 10, no. 4, p. 1919–1926, 1995.
    [10] F W. M. Lin, F. S. Cheng, and M. T. Tsay, "An improved tabu search for economic dispatch
    with multiple minima," IEEE Trans. Power Syst., vol. 17, no. 1, p. 108–112 , 2002.
    [11] R. H. Liang, "A neural-based re-dispatch approach to dynamic generation allocation," IEEE
    Trans. Power Syst., vol. 14, no. 4, p. 1388–1393, 1999.
    [12] T. Yalcinoz and M. J. Short, "Neural networks approach for solving economic dispatch
    problem with transmission capacity constraints," IEEE Trans. Power Syst., vol. 13, no. 2, p.
    307–313, 1998.
    [13] Z. L. Gaing, "Particle swarm optimization to solving the economic dispatch considering the
    generator constraints," IEEE Trans. Power Syst. , vol. 18, no. 3, p. 1187–1195, 2003.
    [14] J.B. Park, Y.W. Jeong, J.R. Shin, K.Y. Lee, "An improved particle swarm optimization for
    nonconvex economic dispatch problems," IEEE Trans. Power Syst. , vol. 25, no. 1, p. 156–
    166, 2010.
    [15] A. Bhattacharya, P.K. Chattopadhyay, "Biogeography-based optimization for different
    economic load dispatch problems," IEEE Trans. Power Syst., vol. 25, no. 2, p. 1064–1077,
    2010.48
    [16] C.L. Chiang, "Improved genetic algorithm for power economic dispatch of units with valvepoint effects and multiple fuels," IEEE Trans. Power Syst. , vol. 20, no. 4, p. 1690–1699,
    2005.
    [17] B. K. Panigrahi, V.R. Pandi, "Bacterial foraging optimization: Nelder–Mead hybrid
    algorithm for economic load dispatch," IET Gener. Transm. Distrib., vol. 2, no. 4, p. 556–
    565, 2008.
    [18] N. Nomana, H. Iba, "Differential evolution for economic load dispatch problems," Electr.
    Power Syst. Res., vol. 78, no. 8, p. 1322–1331, 2008.
    [19] Y.H. Hou, Y.W. Wu, L.J. Lu, X.Y. Xiong, "Generalized ant colony optimization for
    economic dispatch of power systems," in International Conference on Power System
    Technology, Power-con, 2002.
    [20] V L.D.S. Coelho, V.C. Mariani, "Combining of chaotic differential evolution and quadratic
    programming for economic dispatch optimization with valve-point effect," IEEE Trans.
    Power Syst. , vol. 21, no. 2, p. 989–996, 2006.
    [21] J.G. Vlachogiannis, K.Y. Lee, "Economic load dispatch—a comparative study on heuristic
    optimization techniques with an improved coordinated aggregation based PSO," IEEE
    Trans. Power Syst, vol. 24, no. 2, p. 991–1001, 2009.
    [22] K. Meng, H.G. Wang, Z.Y. Dong, K.P. Wong, "Quantum-inspired particle swarm
    optimization for valve-point economic load dispatch," IEEE Trans. Power Syst., vol. 25, no.
    1, p. 215–222, 2010.49
    [23] P. Roy, P. Roy, A. Chakrabarti, "Modified shuffled frog leaping algorithm with genetic
    algorithm crossover for solving economic load dispatch problem with valve-point effect,"
    Appl. Soft Comput. , vol. 13, p. 4244–4252, 2013.
    [24] A. Srinivasa Reddy, K. Vaisakh, "Shuffled differential evolution for large scale economic
    dispatch," Electr. Power Syst. Res., vol. 96, p. 237–245., 2013.
    [25] A. Bhattacharya, P.K. Chattopadhyay, "Hybrid differential evolution with biogeographybased optimization for solution of economic load dispatch," IEEE Trans. Power Syst., vol.
    25, no. 4, p. 1955–1964., 2010.
    [26] Barisal AK, Prusty RC, "Large scale economic dispatch of power systems using oppositional
    invasive weed optimization," Appl Soft Comput., vol. 29, p. 122–37, 2015.
    [27] H. Tizhoosh, "Opposition-based learning: a new scheme for machine intelligence," in
    Computational Intelligence for Modeling Control and Automation, Austria, 2005.
    [28] Mirjalili S, Mirjalili SM, Lewis, "A. Grey wolf optimizer," Adv Eng Softw March , vol. 69,
    no. 1, pp. 46-61, 2014.
    [29] Shakarami, Reza M, Faraji I, "Design of SSSC-based stabilizer to damp inter-area
    oscillations using gray wolf optimization algorithm," pp. 1-66, 2015.
    [30] El-Fergany, Attia A, Hasanien HM, "Single and multi-objective optimal power flow using
    grey wolf optimizer and differential evolution algorithms.," Electric Power Comp Syst., vol.
    43, p. 1548–59., 2015.50
    [31] K. Bhattacharjee, A. Bhattacharya, S.H. Dey, " Oppositional real coded chemical reaction
    optimization for different economic dispatch problems," Int. J. Electr. Power Energy Syst. ,
    vol. 55, p. 378–391, 2014.
    [32] N. Sinha, R. Chakrabarti, and P. K. Chattopadhyay, "Evolutionary programming techniques
    for economic load dispatch," IEEE Trans. Evol. Computat., vol. 7, no. 1, p. 83–94, 2003.
    [33] Muro C, Escobedo R, Spector L, Coppinger RP, "Wolf-pack (Canis lupus) hunting strategies
    emerge from simple rules in computational simulations.," Behav. Process. , vol. 88, no. 3, p.
    192–7, 2011.
    [34] Wen Long, Jianjun Jiao, Ximing Liang, Mingzhu Tang, "An exploration-enhanced grey wolf
    optimizer to solve high-dimensional numerical optimization," Engineering Applications of
    Artificial Intelligence , vol. 68, p. 63–80, 2018.
    [35] Prashant J. Gaidhane, Madhav J. Nigam, "A hybrid grey wolf optimizer and artificial bee
    colony algorithm for enhancing the performance of complex systems," Journal of
    Computational Science , vol. 27, p. 284–302, 2018.
    [36] Feng Wang, Heng Zhang, Kangshun Li, Zhiyi Lin, Jun Yang, Xiao-Liang Shen, "A hybrid
    particle swarm optimization algorithm using adaptive learning strategy," Information
    Sciences , vol. 436–437, p. 162–177, 2018.
    [37] D. Simon, M. Ergezer, D. Du, "Oppositional biogeography-based optimization.,"
    http://embeddedlab.csuohio.edu/BBO/.51
    [38] B. Shaw, V. Mukherjee, S.P. Ghoshal, "A novel opposition-based gravitational search
    algorithm for combined economic and emission dispatch problems of power systems," Int.
    J. Electr. Power Energy Syst. , vol. 35, no. 1, p. 21–33, 2012.
    [39] A. Chatterjee, S.P. Ghoshal, V. Mukherjee, "Solution of combined economic and emission
    dispatch problems of power systems by an opposition-based harmony search algorithm," Int.
    J. Electr. Power Energy Syst. , vol. 39, no. 1, p. 9–20, 2012.
    [40] B. Mandal, P.K. Roy, "Optimal reactive power dispatch using quasi-oppositional teaching
    learning based optimization,," Int. J. Electr. Power Energy Syst. , vol. 53, p. 123–134, 2013.
    [41] Ciornei I, Kyriakides E, "Efficient hybrid optimization solution for the economic dispatch
    with nonsmooth cost function," in Proc IEEE Power Tech, Bucharest, Romania, 2009.
    [42] I. Ciornei, E. Kyriakides, "A GA-API solution for the economic dispatch of generation in
    power system operation," IEEE Trans. Power Syst. , vol. 27, no. 1, pp. 233-242, 2012.
    [43] Orero SO, Irving MR, "Large scale unit commitment using a hybrid genetic algorithm.,"
    Elect Power Energy Syst , vol. 19, no. 1, p. 45–55, 1997.
    [44] J.B. Park, Y.W. Jeong, J.R. Shin, K.Y. Lee, "An improved particle swarm optimization for
    nonconvex economic dispatch problems," IEEE Trans. Power Syst. , vol. 25, no. 1, pp. 156-
    166, 2010.
    [45] Chiang CL, "Improved genetic algorithm for power economic dispatch of units with valvepoint effects and multiple fuels.," IEEE Trans Power Syst , vol. 20, no. 4, pp. 1690-9, 2005.

    QR CODE