簡易檢索 / 詳目顯示

研究生: 楊崇義
Chong-Yi Yang
論文名稱: 高品質無線網路影像傳輸機制之研究
QoS-Aware Delivery Approaches for Improving Video Transmission in Wireless Networks
指導教授: 陳俊良
Jiann-Liang Chen
口試委員: 黎碧煌
Bih-Hwang Lee
陳俊良
Jiann-Liang Chen
陳振楠
Jen-Nan Chen
柯志亨
Chih-Heng Ke
郭斯彥
Sy-Yen Kuo
陳英一
Ing-Yi Chen
楊竹星
Chu-Sing Yang
林宗男
Tsung-Nan Lin
黃能富
Nen-Fu Huang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 整份PDF共頁110數
中文關鍵詞: 無線網路跨階層設計佇列管理服務品質即時影音多媒體
外文關鍵詞: IEEE 802.11e, Queue management, Cross-layer, Multimedia
相關次數: 點閱:176下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來無線網路技術及資訊軟硬體發展已經非常成熟,故而無線網路相關應用也非常之普及。行動裝置透過無線網路的應用也甚普遍,尤其是在多媒體影音傳送的應用。故而,針對在無線網路環境上傳送不同的服務,需要有QoS機制來確保即時性影音資料的傳送品質。 IEEE 802.11e的標準協定則是用於解決無線網路環境中的QoS問題,該協定可將不同服務等級的資料,配置到四個不同的傳送佇列中,來達到此目的。而跨階層(Cross-layer)設計則是改善無線網路傳送品質的方法之一。

    然而,就算無線網路技術與產品再成熟,仍然有其不足之處,但是諸如訊號不佳、斷線、以及傳輸品質不穩定等問題仍然未能獲得有效解決。在無線網路環境中即時影音資料的傳送過程中,當資料傳送過程中因封包遺失或毀損,可能導致於接收端的影像畫面無法完整的解碼。以上這種情況,便是浪費了網路的資源傳送無效的資料,也消耗了載具或基地台電力。

    本研究則提出了基於IEEE 802.11e無線網路的佇列管理演算法,可提升影像傳送的品質,該演算法可針對不同的影像的訊框(frame),即 I-frame、P-frame、B-frame,訂立不同的傳送策略以改善影像傳送品質,即將不同重要性的影像訊框配置到不同優先權的佇列。此外,有效率的傳送資料也是該演算法用來改善影像傳送品質的策略之一。此機制除了不傳送沒有用的封包外(如:毀損的訊框封包),當無線網路處於高負載的情況下,亦會優先傳送重要的影像訊框,第一優先為I-frame,其次為P-frame與B-frame。

    另外,以MPEG-4為例,影像訊框之間是有相依性的,當最重要的I-frame傳送過程造成資料遺失,除了接收端無法正確解碼該訊框,相依的P-frame與B-frame亦會無法解碼,本演算法的分析機制亦會考慮此種情況,將有限的網路資源運用最大化。

    本研究透過模擬實驗,針對不同研究提出之演算,比較傳送前與接收後的影像PSNR來分析影像傳送品質;再者,也分析訊框遺失比率做為參考指標之一。研究結果顯示,本研究相較於IEEE 802.11e EDCA及adaptive mapping演算法,都有較好的表現。


    Recent developments in hardware, software, and communication technologies have resulted in increasing interest in the use of wireless local area networks (WLANs). Mobile devices with embedded WLAN functionality are becoming increasingly popular. Such devices must be designed to support applications that require high quality of service (QoS) and have favorable characteristics to maximize battery capacity. IEEE 802.11e has been introduced to support QoS in WLANs by allocating different traffics to four access categories. Cross-layer design is a method to improve the transmission quality of multimedia over wireless networks.

    The resources of queues in IEEE 802.11e networks may be taken up by the transmission of information that is useless to the receiver. It is not easy to transmit packets in WLANs with a heavy traffic load, and if the network becomes congested, important packets may be dropped. Accordingly, efficient transmission of video packets is important for improving the quality of video transmission..

    Further, video packets tend to be affected by congestion considerably more than data packets. Therefore, controlling the traffic of insignificant packets to avoid the transmission of useless data can improve the quality of video transmission. On the basis of this concept, in this study, we propose strategies that are different from the approaches proposed in earlier studies. The proposed strategies of QoS-Aware Delivery Approaches that exploit different methods to process intra-coded (I)/predictive-coded (P)/bidirectionally predictive-coded (B) video frame packets to improve video transmission quality in WLANs. First, identification of the dependence of video frames in a group of pictures (GOP) can prevent the transmission of useless data. Thus, the transmission channel resources are saved by avoiding the transmission of undecodable video frames. Second, in heavily loaded WLANs, it is not sufficient to utilize the queues to transmit important video frame packets. The proposed mechanisms adopt the method of an aggressive dropping of unimportant packets to reserve the transmission channel resources for important video packets.

    In order to evaluate the quality of MPEG-4 video delivery over IEEE 802.11e networks by the proposed mechanism, this work adopted two evaluation metrics: peak signal-to-noise ratio (PSNR) and the ratio of frames loss. The simulation results demonstrate that, in terms of both PSNR and the ratio of frames loss, the proposed scheme outperforms exiting schemes such as enhanced distributed channel access (EDCA) and adaptive mapping.

    誌 謝 ii 摘要 iii ABSTRACT v Chapter 1. Introduction 1 1.1. Problem Statement 3 1.2. Contributions of the Thesis 5 1.3. Organization 7 Chapter 2. Background and Related Work 8 2.1. Technical background 8 2.1.1. CSMA with Collision Avoidance (CSMA/CA) 8 2.1.2. Distributed Coordination Function (DCF) 11 2.1.2.1. MAC Frame Types 11 2.1.2.2. The Access Method 14 2.1.2.3. Inter-Frame Spacing (IFS) 15 2.1.3. IEEE 802.11e Architecture 17 2.1.4. MPEG-4 Structure 28 2.1.5. Peak Signal to Noise Ratio (PSNR) 33 2.1.6. The energy consumption of the video transmission 35 2.1.7. Random early detection 37 2.1.8. Analytical Model 39 2.2. Related work 41 Chapter 3. The Proposed QoS-Aware Delivery Approaches 49 3.1. System Assumption 50 3.2. System Notations 51 3.3. The Proposed System Architecture and Mapping Mechanisms 53 3.3.1. The Novel Mapping Mechanism (NMM) 56 3.3.2. The Frame-based Mapping Mechanism (FBM) 61 3.3.3. The Hierarchical Packet Pre-dropping (HPPD) Approach 63 Chapter 4. Simulation Results and Discussions 75 4.1 Simulation Model 75 4.2 Simulation results and discussions 77 4.2.1 Simulation results and discussions of NMM 77 4.2.2 Simulation results and discussions of FBM 81 4.2.3 Simulation results and discussions of HPPD 88 Chapter 5. Conclusions and Future Works 90 References 91

    Lloret, J., Mauri, P. V., Garcia, M., & Ferrer, A. J. (2006). Designing WLANS for video transmission in rural environments for agriculture and environmental researches and educational purposes. WSEAS Transactions on Communications, 5(11), 2064-2070.
    [2] Atenas, M., Sendra, S., Garcia, M., & Lloret, J. (2010, December). IPTV Performance in IEEE 802.11n WLANs. In 2010 IEEE Globecom Workshops (pp. 929-933). IEEE.
    [3] Chen, H. L., Lee, P. C., & Hu, S. H. (2008, July). Improving scalable video transmission over IEEE 802.11e through a cross-layer architecture. In 2008 The Fourth International Conference on Wireless and Mobile Communications (pp. 241-246). IEEE.
    [4] Foh, C. H., Zhang, Y., Ni, Z., Cai, J., & Ngan, K. N. (2007). Optimized cross-layer design for scalable video transmission over the IEEE 802.11e networks. IEEE Transactions on Circuits and Systems for Video Technology, 17(12), 1665-1678.
    [5] Alberto Álvarez, Laura Pozueco, Sergio Cabrero, Xabiel García Pañeda, Roberto García, David Melendi, Gabriel Díaz Orueta, Adaptive Streaming: A subjective catalog to assess the performance of objective QoE metrics. Network Protocols and Algorithms 2014;6(2):123–36.
    [6] Alfio Lombardo, Carla Panarello, Giovanni Schembra, EE-ARQ: a Green ARQ-Based Algorithm for the Transmission of Video Streams on Noise Wireless Channels, Network Protocols and Algorithms, Vol 5, No 1 (2013), Pp. 41-70
    [7] Takeuchi, S., Sezaki, K., & Yasuda, Y. Dynamic Adaptation of Contention Window Sizes in IEEE 802.11e Wireless LAN. In Information, Communications and Signal Processing, 2005 Fifth International Conference on (pp. 659-663). IEEE.
    [8] Yan, W., & Benxiong, H. (2004, April). Performance improvement of IEEE 802.11e. In Local and Metropolitan Area Networks, 2004. LANMAN 2004. The 13th IEEE Workshop on (pp. 51-54). IEEE.
    [9] Majkowski, J., & Palacio, F. C. (2006, September). Enhanced TXOP Scheme for Efficiency Improvement of WLAN IEEE 802.11e. In VTC Fall (pp. 1-5).
    [10] Majkowski, J., & Palacio, F. C. (2006, September). Dynamic TXOP configuration for Qos enhancement in IEEE 802.11e wireless LAN. In Software in Telecommunications and Computer Networks, 2006. SoftCOM 2006. International Conference on (pp. 66-70). IEEE.
    [11] Kim, J. O., Tode, H., & Murakami, K. (2005, December). Service-based rate adaptation architecture for IEEE 802.11e QoS networks. In Global Telecommunications Conference, 2005. GLOBECOM'05. IEEE (Vol. 6, pp. 5-pp). IEEE.
    [12] Siris, V. A., & Courcoubetis, C. (2006, June). Resource control for the EDCA mechanism in multi-rate IEEE 802.11e networks. In Proceedings of the 2006 International Symposium on on World of Wireless, Mobile and Multimedia Networks (pp. 419-428). IEEE Computer Society.
    [13] Cranley N, DavisM(2007) An experimental investigation of IEEE 802.11e TXOP facility for real-time video streaming. In global telecommunications conference, 2007. GLOBECOM’07. IEEE. IEEE, pp 2075–2080
    [14] Ke CH, Yang CY, Chen JL (2014) A stream-based mapping mechanism for MPEG-4 Video Transmission over IEEE 802.11e. In computer, consumer and control (IS3C), 2014 international symposium on, IEEE, pp 512–515
    [15]“Cisco Visual Networking Index: Forecast and Methodology, 2016– 2021”. White paper by Cisco. June 6, 2017. https://www.cisco.com/c/en/us/solutions/collateral/serviceprovider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
    [16] Siris, V. A., & Courcoubetis, C. (2006, June). Resource control for the EDCA mechanism in multi-rate IEEE 802.11e networks. In Proceedings of the 2006 International Symposium on on World of Wireless, Mobile and Multimedia Networks (pp. 419-428). IEEE Computer Society.
    [17] Ksentini, A., Naimi, M., & Guéroui, A. (2006). Toward an improvement of H.264 video transmission over IEEE 802.11e through a cross-layer architecture. IEEE communications magazine, 44(1), 107-114.
    [18] Foh, C. H., Zhang, Y., Ni, Z., Cai, J., & Ngan, K. N. (2007). Optimized cross-layer design for scalable video transmission over the IEEE 802.11e networks. Circuits and Systems for Video Technology, IEEE Transactions on, 17(12), 1665-1678.
    [19] Chen, H. L., Lee, P. C., & Hu, S. H. (2008, July). Improving scalable video transmission over IEEE 802.11e through a cross-layer architecture. In 2008 The Fourth International Conference on Wireless and Mobile Communications (pp. 241-246). IEEE.
    [20] Ke, C. H., Yang, C. Y., & Chen, J. L. (2017). A novel mapping mechanism for MPEG-4 video delivery over IEEE 802.11e networks. Multimedia tools and applications, 76(4), 5937-5949.
    [21] Ke, C. H., Yang, C. Y., & Chen, J. L. (2017). Hierarchical Packet Pre-dropping Approach for Improved MPEG-4 Video Transmission in Heavily Loaded Wireless Networks. Mobile Networks and Applications, 22(1), 30-39.
    [22] ANSI/IEEE standard 802.11, 1999 edition (R2003), “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE/SA Standards Board, Tech. Rep., 1999.
    [23] Standard, F. (1996). 1037C. Department of Defense Dictionary of Military and Associated Terms in support of MIL-STD-188.
    [24] Hapeman, E. R., Zeuch, W. R., Crandall, J. A., Carioti, S. M., Barclay, S. D., & Underkoffler, C. (2001). Telecom Glossary 2000–American National Standard T1. 523-2001.
    [25] IEEE Std 802.11 MAC and PHY specifications (2007) IEEE standard for information technology - telecommunications and information exchange between systems - local and metropolitan area networks - specific requirements - part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications, IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999), pp 1–1076.
    [26] Mangold, S., Choi, S., Hiertz, G. R., Klein, O., & Walke, B. (2003). Analysis of IEEE 802.11e for QoS support in wireless LANs. Wireless Communications, IEEE, 10(6), 40-50.
    [27] Natkaniec, M., & Pach, A. R. (2000, September). An analysis of modified backoff mechanism in IEEE 802.11 networks. In First Polish-German Teletraffic Symposium (PGTS2000) (pp. 24-26).
    [28] Lin, C. H., Shieh, C. K., Ke, C. H., Chilamkurti, N. K., & Zeadally, S. (2009). An adaptive cross-layer mapping algorithm for MPEG-4 video transmission over IEEE 802.11e WLAN. Telecommunication Systems, 42(3-4), 223.
    [29] IEEE Std. 802.11e, E., IEEE Standards for Local and Metropolitan Area Networks: Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements.
    [30] Romdhani, L., & Bonnet, C. (2007, October). Performance analysis and optimization of the 802.11e EDCA transmission opportunity (TXOP) mechanism. In Third IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob 2007) (pp. 68-68). IEEE.
    [31] Prado J. d. and Choi S. “EDCF TXOP Bursting Simulation Results”, in the IEEE 802.11e Working Doc. 802.11-02/048r0, January 2002.
    [32] woon Ahn, Y., Cheng, A. M. K., Baek, J., & Fisher, P. S. (2010, April). Detection and punishment of malicious wireless stations in IEEE 802.11e EDCA network. In 2010 IEEE Sarnoff Symposium(pp. 1-5). IEEE.
    [33] Lai, W. P., & Liou, E. C. (2012). A novel cross-layer design using comb-shaped quadratic packet mapping for video delivery over 802.11e wireless ad hoc networks. EURASIP Journal on Wireless Communications and Networking, 2012(1), 59.
    [34] ITU-T, Recommendation T.81 – digital compression and coding of continuous-tone till images: requirements and guidelines
    [35] IJG, BIndependent JPEG Group - free library for jpeg image compression, release 6b^, March 1998. http://www.ijg.org/ (last accessed: 16 Jan 2012)
    [36] ISO/IEC, BInformation technology: JPEG 2000 image coding system: core coding system^, 2000—2004
    [37] Koumaras H, Kourtis A, Lin C, Shieh C (2008) End-to-end prediction model of video quality and decodable frame rate for MPEG broadcasting services. Int J Adv Netw Serv 1(1)
    [38] Lin CH, Ke CH, Shieh CK, Chilamkurti NK (2006) The packet loss effect on MPEG video transmission in wireless networks. In advanced information networking and applications, 2006. AINA 2006. 20th international conference on, IEEE, vol. 1, pp 565–572
    [39] Lee, S. B., Muntean, G. M., & Smeaton, A. F. (2009). Performance-aware replication of distributed pre-recorded IPTV content. IEEE Transactions on Broadcasting, 55(2), 516-526.
    [40] Ziviani, A., Wolfinger, B. E., De Rezende, J. F., Duarte, O. C. M., & Fdida, S. (2005). Joint adoption of QoS schemes for MPEG streams. Multimedia tools and applications, 26(1), 59-80.
    [41] Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on networking, (4), 397-413.
    [42] Flowchart of random early detection (RED). Available at: https://en.wikipedia.org/wiki/Random_early_detection.
    [43] Ke, C. H., Lin, C. H., Shieh, C. K., Hwang, W. S., & Ziviani, A. (2007). Evaluation of streaming MPEG video over wireless channels. Journal of mobile multimedia, 3(1), 47-64.
    [44] Debnath, T. (2012). A Novel QoS-aware MPEG-4 video delivery algorithm over the lossy IEEE 802.11 WLANs to improve the video quality.F
    [45] Wan, Z., Xiong, N., Ghani, N., Peng, M., Vasilakos, A. V., & Zhou, L. (2011, April). Adaptive scheduling for wireless video transmission in high-speed networks. In 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (pp. 180-185). IEEE.
    [46] Xiao, X., & Yanlin, X. (2013, December). A dynamic queue assignment algorithm under ieee 802.11e. In 2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA) (pp. 186-189). IEEE.
    [47] Rakesh Radhakrishnan, Balaji Tirouvengadam, Amiya Nayak,“Cross Layer Design for Efficient Video Streaming over LTE Using Scalable Video Coding”, Network Protocol, and Algorithms, vol.4 , No.4, 2012.
    [48] Ghafoor, K. Z., Bakar, K. A., Zainuddin, Z. M., Ke, C. H., & Gonzalez, A. J. (2012). Reliable Video Geocasting over Vehicular Ad Hoc Networks. Ad Hoc & Sensor Wireless Networks, 15(2-4), 201-221.
    [49] Pérez-Costa, X., & Camps-Mur, D. (2007, July). A protocol enhancement for IEEE 802.11 distributed power saving mechanisms no data acknowledgement. In 2007 16th IST Mobile and Wireless Communications Summit (pp. 1-7). IEEE.
    [50] N Chilamkurti, S Zeadally, R Soni, G Giambene. Wireless multimedia delivery over 802.11e with cross-layer optimization techniques. Multimedia Tools Appl. 47(1), 189–205 (2010). doi:10.1007/s11042-009-0413-6
    [51] Lai, W. P., & Liou, E. C. (2012). A novel cross-layer design using comb-shaped quadratic packet mapping for video delivery over 802.11e wireless ad hoc networks. EURASIP Journal on Wireless Communications and Networking, 2012(1), 59.
    [52] Lee, S., & Chung, K. (2013). The study of dynamic video frame mapping scheme for multimedia streaming over IEEE 802.11e WLAN. International Journal of Multimedia and Ubiquitous Engineering, 8(1), 163-174.
    [53] Yao, X. W., Wang, W. L., Yang, S. H., Cen, Y. F., Yao, X. M., & Pan, T. Q. (2014). Ipb-frame adaptive mapping mechanism for video transmission over IEEE 802.11e WLANs. ACM SIGCOMM Computer Communication Review, 44(2), 5-12.
    [54] Sadek, R., Youssif, A., & Elaraby, A. (2015). MPEG-4 video transmission over IEEE 802.11e wireless mesh networks using dynamic-cross-layer approach. National Academy Science Letters, 38(2), 113-119.
    [55] Maloth, B., Sarabu, A., & Kumar, B. V. (2012). An Adaptive Cross-layer Mapping Algorithm for Multiview Video Coding over IEEE 802.11e WLANs. International Journal of Computer Science Engineering & Technology, 2(2).
    [56] The Network Simulator, NS2.29. Available at: http://www.isi.edu/nsnam/ns/.
    [57] http://trace.eas.asu.edu/yuv.
    [58] Ke, C. H., Yang, C. Y., Chen, J. L., Ghafoor, K. Z., & Lloret, J. (2015). Frame-based mapping mechanism for energy-efficient MPEG-4 video transmission over IEEE 802.11e networks with better quality of delivery. Journal of Network and Computer Applications, 58, 280-286.
    [59] Ke, C. H., Yang, C. Y., & Chen, J. L. (2017). Hierarchical Packet Pre-dropping Approach for Improved MPEG-4 Video Transmission in Heavily Loaded Wireless Networks. Mobile Networks and Applications, 22(1), 30-39.
    [60] "IEEE Standard 802.11", Y. Xin, R. Sun, O. Aboulmagd, Channel access in A-BFT over multiple channels, Jan. 2016, [online] Available: https://mentor.ieee.org/802.11/documents?is_dcn=SSW&is_group=00ay.

    無法下載圖示 全文公開日期 2024/08/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE