簡易檢索 / 詳目顯示

研究生: 藍仁謙
Jen-Chien Lan
論文名稱: 應用LES紊流模型探討大氣邊界層中地面型太陽能板受風特性
Study of Wind-Resistant Characteristics of Ground-Mounted Solar Panels in Atmospheric Boundary Layer by LES Turbulence Model
指導教授: 陳瑞華
Rwey-Hua Cherng
黎益肇
Yi-Chao Li
口試委員: 陳瑞華
黃慶東
鄭蘩
黎益肇
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 121
中文關鍵詞: LESSST k-ω風壓係數太陽能板
外文關鍵詞: LES, SST k-ω, Wind Pressure Coefficient, Solar panel
相關次數: 點閱:305下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來隨著政府積極地推動太陽能發電,各地設置於建築物屋頂或地面的太陽光電系統日益增多,而為了確保太陽光電系統能有一定的耐風安全性,許多學者開始對其進行研究,主要利用風洞實驗或計算流體力學(CFD)模擬其受風特性,並制定出相關規範。
本研究利用LES紊流模型,並以非穩態的方式進行求解,針對地面型太陽能面板進行模擬分析;其中,面板傾角為10度或25度,來風方向為0度或180度。模擬後之結果與風洞實驗資料進行比較,包含風壓係數與淨風壓係數,以驗證模擬的準確性。由於本研究模擬風壓歷時之長度不足以進行極值分析,因此僅分析淨風壓係數歷時及風力係數歷時之機率分布及頻譜,初步探討以LES結果進行極值分析之可行性。此外,本研究亦比較其他紊流模型,以探討使用不同紊流模型模擬結果之間的差異。
本研究結果發現,LES相較於SST k-ω紊流模型,整體結果較為準確。雖然模擬之太陽能板模型未考慮面板下支撐柱,而風洞實驗模型於面板下方有密集的風壓測管分布,使得在來風方向0度或180度時,模擬結果之淨風壓係數普遍略高於實驗值,但機率分布與頻譜之結果大致與實驗值相符,因此預期未來利用LES模擬結果進行極值分析後應可得到合理的極值。此外,本研究發現CFD在模擬分析上的幾項優勢:1.能展現較為完整的流場資訊及面板上之風壓分布;2.可依據實場建立無縮尺模型,並進行與真實情況較為相符之模擬分析;3.模擬結果可避免實驗儀器精度不足或實驗儀器配置之限制。


In recent years, as the government has actively promoted solar power generation, more solar photovoltaic systems are installed on the ground or building roofs. In order to ensure that the solar photovoltaic systems are safe under wind, many scholars have begun to use wind tunnel experiments or Computational Fluid Dynamics(CFD) to study their wind characteristics and formulate relevant specifications.
In this study, ground-mounted solar panels are simulated by Large Eddy Simulation(LES) model, and the unsteady solutions are obtained. The CFD models with panel inclination angles of 10° and 25° are established, and wind directions of the incoming flow are 0° and 180°. The simulation results are compared with the experimental data, including wind pressure coefficients and net wind pressure coefficients, to verify the accuracy of the simulation results. However, the simulation duration in this study is not sufficient for extreme value analysis. Therefore, this study only verifies the probability distributions and spectra of net wind pressure coefficients and wind force coefficients. In addition, LES results are also compared with those of SST k-ω model.
In general, LES yields more accurate results than SST k-ω turbulence model. Although this study uses a simplified solar panel model, and the wind tunnel experimental model has many measuring tubes under the panel, it is found that the simulated net wind pressure coefficients are generally larger than the experimental values whether the wind direction is 0° or 180°. The simulation based probability distributions and frequency spectra are roughly in line with the experimental results, and it is expected that reasonable extreme values would be obtained when the simulation time is sufficient. In addition, this study finds several advantages in CFD:1.It can display more complete flow field information and wind pressure distribution on the panel. 2. A scale-free model simulation can be carried out in CFD. 3. The limitation of the experimental instrument configuration can be released in CFD.

摘要 I Abstract III 誌謝 V 目錄 VII 表目錄 X 圖目錄 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文架構 2 第二章 文獻回顧 3 2.1 風洞實驗之相關文獻 3 2.2 太陽能板之CFD模擬相關研究 4 第三章 計算流體力學之介紹 7 3.1 CFD軟體介紹 7 3.2 基本控制方程式 8 3.3 PISO演算法 9 3.4 紊流模型 10 3.5 隨機紊流產生法 12 第四章 大氣邊界層 15 4.1 平均風速剖面 15 4.1.1 指數律平均風速剖面 15 4.1.2 對數律平均風速剖面 16 4.2 紊流強度 17 4.3 紊流積分長度尺度 18 4.4 紊流頻譜 19 第五章 CFD模型建構與設定 21 5.1 模擬案例介紹 21 5.2 計算域規劃 22 5.3 參數設定 22 5.3.1 入流條件 22 5.3.2 邊界條件 23 5.3.3 網格離散 24 5.3.4 時間步長設定 24 5.3.5 收斂條件 25 第六章 結果與討論 27 6.1 誤差分析 27 6.2 CaseA之CFD結果與驗證 27 6.3 CaseB之CFD結果與驗證 29 6.3.1 風壓係數 30 6.3.2 淨風壓係數 32 6.4 CaseB之CFD結果與討論 34 6.4.1 淨風壓係數歷時之機率分布及頻譜分析 35 6.4.2 整體風力係數歷時之機率及頻譜分析 37 第七章 結論與建議 43 7.1 結論 43 7.2 建議 44 參考文獻 99

[1] Abiola-Ogedengbe, A. (2013). Experimental investigation of wind effect on solar panels.
[2] Aboshosha, H., Elshaer, A., Bitsuamlak, G. T., El Damatty, A. J. J. o. W. E., & Aerodynamics, I. (2015). Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings. 142, 198-216.
[3] Britter, R., & Schatzmann, M. (2007). Model Evaluation Guidance and Protocol Document COST Action 732. COST Office Brussels.
[4] Castro, H. G., Paz, R. R., & Sonzogni, V. E. (2011). Generation of turbulent inlet velocity conditions for large eddy simulations. Mecánica Computacional, 30(29), 2275-2288.
[5] Chang, J. C., Hanna, S. R. J. M., & Physics, A. (2004). Air quality model performance evaluation. 87(1), 167-196.
[6] Committee, S. S. P. S. (2012). Wind design for low-profile solar photovoltaic arrays on flat roofs. Paper presented at the Structural Engineers Association of California, Sacramento, CA, Report No. SEAOC PV2-.
[7] Courant, R., Friedrichs, K., & Lewy, H. (1967). On the partial difference equations of mathematical physics. IBM journal of Research Development, 11(2), 215-234.
[8] Delaunay, B. (1934). On the empty sphere. In Memory of Georges Voronoi. Bulletin of the USSR Acade-my of Sciences, Section: Mathematics and Natural Sci-ences 6: 793-800.
[9] Delaunay, B. (1934). Sur La sphère Vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii I Estestven-nyka Nauk7(793-800):1-2.
[10] Emil Simiu, & Yeo, D.-H. (2019). Wind Effect On Building:Modern Structural Design for Wind. John Wiley & Sons Ltd:81,184.
[11] Engineers, A. S. o. C. (2017). Minimum design loads and associated criteria for buildings and other structures.
[12] Greenshields, C. J. (2021). OpenFOAM, User Guide, version 9.
[13] Huang, S., Li, Q., Wu, J. J. J. o. W. E., & Aerodynamics, I. (2010). A general inflow turbulence generator for large eddy simulation. 98(10-11), 600-617.
[14] Irtaza, H., & Agarwal, A. (2018). CFD simulation of turbulent wind effect on an array of ground-mounted solar PV panels. Journal of the Institution of Engineers : Series A, 99(2), 205-218.
[15] JIS. (2017). JIS-C8955 Loading Design Guide on Structures For Photovoltaic Array, Japanese Standard Association.
[16] Jubayer, C. M., & Hangan, H. (2014). Numerical simulation of wind effects on a stand-alone ground mounted photovoltaic (PV) system. Journal of Wind Engineering and Industrial Aerodynamics, 134, 56-64.
[17] Li, Y.-C., Cheng, C.-M., Lo, Y.-L., Fang, F.-M., Zheng, D.-q. J. J. o. W. E., & Aerodynamics, I. (2015). Simulation of turbulent flows around a prism in suburban terrain inflow based on random flow generation method simulation. 146, 51-58.
[18] Patruno, L., & Ricci, M. (2017). On the generation of synthetic divergence-free homogeneous anisotropic turbulence. Computer Methods in Applied Mechanics Engineering, 315, 396-417.
[19] Patruno, L., & Ricci, M. (2018). A systematic approach to the generation of synthetic turbulence using spectral methods. Computer Methods in Applied Mechanics Engineering, 340, 881-904.
[20] Regulation, T. E. U. P. (2005). Eurocode 1: Actions on structures - Part 1-4: General actions - Wind actions.
[21] Shademan, M., Barron, R., Balachandar, R., & Hangan, H. (2014). Numerical simulation of wind loading on ground-mounted solar panels at different flow configurations. Canadian Journal of Civil Engineering, 41(8), 728-738.
[22] Sheikh, I. I. (2019). Numerical investigation of drag and lift coefficient on a fixed tilt ground mounted photovoltaic module system over inclined terrain. Int J Fluids Eng, 11, 37-49.
[23] Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. The basic experiment. Monthly weather review, 91(3), 99-164.
[24] Smirnov, A., Shi, S., & Celik, I. (2001). Random flow generation technique for large eddy simulations and particle-dynamics modeling. J. Fluids Eng., 123(2), 359-371.
[25] Voronoi, G. (1908). New Applications of Continuous Parameter in the Theory of Quadratic Forms. Journal of Pure and Applied Mathematics 133(133): 97-178.
[26] 中華民國風工程學會. (2016). 風工程理論與應用.
[27] 內政部營建署. (2016). 建築物耐風設計規範及解說.
[28] 林逸崧. (2019). 單斜式面板極值風壓係數之估計. 國立臺灣科技大學營建工程系碩士論文, 台北市.
[29] 陳瑞華、傅仲麟、蔡宇勛、沈朝斌、林逸崧. (2020). 太陽光電系統之耐風設計規範研擬: 內政部建築研究所委託研究報告.
[30] 蔡宇勛. (2020). 以RANS紊流模型探討不同高寬比之地面單斜太陽能棚架平均風壓特性. 國立臺灣科技大學營建工程系碩士論文, 台北市.

無法下載圖示 全文公開日期 2024/09/07 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE