簡易檢索 / 詳目顯示

研究生: 張祐維
You-Wei Chang
論文名稱: 考量部分遮陰條件下之不同材質太陽能板最大功率追蹤研究
Investigation of Maximum Power Point Tracking of Different Materials of Solar Panels Considering Partial Shading Conditions
指導教授: 連國龍
Kuo-Lung Lian
口試委員: 林長華
Chang-Hua Lin
張建國
Chien-Kuo Chang
黃維澤
Wei-Tzer Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 67
中文關鍵詞: 一個二極管模型部分遮蔽情況理想因子曲率最大功率點追蹤
外文關鍵詞: One diode models, partial shading Condition, ideality factor, curvature, maximum power point tracking
相關次數: 點閱:309下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今太陽能板的安裝成本大幅降低,因此太陽能的優勢是促進燃煤電力轉向再生能源發電的原因之一。目前市面上有三種廣泛被使用的太陽能板材質:單晶矽,多晶矽和非晶矽。在本文中,我們建立三種不同材質的一個二極管模型以便在部分遮陰情況下找到它們的IV特性曲線。

    在本文中,我們已經證明ODM的理想因子與PV曲線的曲率有密切相關。我們還證明了因為非晶矽的太陽能板有最低的曲率值,導致最大功率點追蹤器在追蹤非晶矽的太陽能板時,相比單晶矽和多晶矽的太陽能板所花費的時間還要少且有更好的追蹤效率。本文採用兩種不同的最大功率點追蹤演算法分別為粒子群最佳化演算法和模擬退火演算法來驗證這個發現。


    The cost of installing solar panels has been greatly reduced nowadays, so the advantages of solar energy are one of the reasons to energy transformation from coal-fired power to renewable energy. There are three materials of widely used modern solar panels: monocrystalline, polycrystalline, and amorphous. In this thesis, we have constructed the one diode models (ODM) of these three different materials in order to find their IV characteristic curves under uniform or partial shading condition (PSC).

    In this thesis, we have showed that the ideality factor from the ODM is closely related the curvatures of the PV curves. We have also demonstrated that a maximum power point (MPP) tracker spends less time and has better tracking efficiency in tracking the MPP of a PV panel, made of amorphous material, because this type of PV panel has the lowest curvature value compared to the monocrystalline and the polycrystalline panels. Two different maximum power point tracking (MPPT) algorithms, such as particle swarm optimization (PSO) and simulated annealing (SA), are used to validate this finding.

    List of Figures List of Tables 1 Introduction 1.1 Background 1.2 Outline 2 One-Diode Model of PV Model 2.1 One-Diode Model (ODM) 2.2 Parameter Extraction Method 2.2.1 Chatterjee Method 2.2.2 Cubas Method 2.2.3 Tai Method 2.3 Temparature and Irradiance Affect 2.4 PSC 2.5 Parameters Estimated Results 2.6 Ideality Factor 3 MPPT Algorithm and Experimental Result 3.1 MPPT ALGORITHM 3.1.1 PSO 3.1.2 SA 3.2 Experimental Set Up 3.2.1 Hardware specications 3.2.2 PV Curves on the PV Emulator 3.3 MPPT Result 3.3.1 Static Tracking 3.3.2 Dynamic Tracking 4 CONCLUSION And FUTURE WORK 4.1 Conclusion 4.2 Future Work REFERENCE

    [1] M. A. Green, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and A. W.
    Ho-Baillie, Solar cell eciency tables (version 54), Progress in Photovoltaics:
    Research and Applications, vol. 27, no. 7, pp. 565575.
    [2] S. Sharma, K. Kumar Jain, and A. Sharma, Solar cells: In research and appli-
    cations a review, Materials Sciences and Applications, vol. 06, pp. 11451155,
    01 2015.
    [3] S. Castro-Hermosa, J. Dagar, A. Marsella, and T. M. Brown, Perovskite solar
    cells on paper and the role of substrates and electrodes on performance, IEEE
    Electron Device Letters, vol. 38, no. 9, pp. 12781281, Sep. 2017.
    [4] F. I. Simon Philipps and W. Warmuth, Photovoltaics report, 03 2019.
    [5] O. Haberlen, M. Polzl, J. Schoiswohl, M. Rosch, S. Leomant, G. Nobauer, and
    W. Rieger, 95 dc dc conversion eciency by novel trench power mosfet with
    dual channel structure to cut body diode losses, in 2015 IEEE 27th Interna-
    tional Symposium on Power Semiconductor Devices IC's (ISPSD), May 2015,
    pp. 6568.
    [6] S. Lyden and M. E. Haque, A simulated annealing global maximum power
    point tracking approach for pv modules under partial shading conditions, IEEE
    Transactions on Power Electronics, vol. 31, no. 6, pp. 41714181, June 2016.
    [7] G. Carannante, C. Fraddanno, M. Pagano, and L. Piegari, Experimental per-
    formance of mppt algorithm for photovoltaic sources subject to inhomogeneous
    insolation, IEEE Transactions on Industrial Electronics, vol. 56, no. 11, pp.
    43744380, Nov 2009.
    [8] R. C. N. Pilawa-Podgurski and D. J. Perreault, Submodule integrated dis-
    tributed maximum power point tracking for solar photovoltaic applications,
    IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 29572967, June
    2013.
    [9] W. Xiao, M. G. J. Lind, W. G. Dunford, and A. Capel, Real-time identication
    of optimal operating points in photovoltaic power systems, IEEE Transactions
    on Industrial Electronics, vol. 53, no. 4, pp. 10171026, June 2006.
    [10] J. H. Lee, H. S. Bae, and B. H. Cho, Resistive control for a photovoltaic bat-
    tery charging system using a microcontroller, IEEE Transactions on Industrial
    Electronics, vol. 55, no. 7, pp. 27672775, July 2008.
    [11] M. A. Elgendy, B. Zahawi, and D. J. Atkinson, Comparison of directly con-
    nected and constant voltage controlled photovoltaic pumping systems, IEEE
    Transactions on Sustainable Energy, vol. 1, no. 3, pp. 184192, Oct 2010.
    [12] M. A. Elgendy, B. Zahawi, and D. J. Atkinson, Assessment of perturb and ob-
    serve mppt algorithm implementation techniques for pv pumping applications,
    IEEE Transactions on Sustainable Energy, vol. 3, no. 1, pp. 2133, Jan 2012.
    [13] M. G. Villalva, J. R. Gazoli, and E. R. Filho, Modeling and circuit-based simu-
    lation of photovoltaic arrays, in 2009 Brazilian Power Electronics Conference,
    Sep. 2009, pp. 12441254.
    [14] H. A. B. Siddique, P. Xu, and R. W. De Doncker, Parameter extraction al-
    gorithm for one-diode model of PV panels based on datasheet values, in 2013
    International Conference on Clean Electrical Power (ICCEP), June 2013, pp.
    713.
    [15] A. Chatterjee, A. Keyhani, and D. Kapoor, Identication of photovoltaic
    source models, IEEE Transactions on Energy Conversion, vol. 26, no. 3, pp.
    883889, Sep. 2011.
    [16] D. Sera, R. Teodorescu, and P. Rodriguez, PV panel model based on datasheet
    values, in 2007 IEEE International Symposium on Industrial Electronics, June
    2007, pp. 23922396.
    [17] J. Cubas, S. Pindado, and M. Victoria, On the analytical approach for mod-
    eling photovoltaic systems behavior, Journal of Power Sources, vol. 247, pp.
    467  474, 2014.
    [18] J. C. H. Phang, D. S. H. Chan, and J. R. Phillips, Accurate analytical method
    for the extraction of solar cell model parameters, Electronics Letters, vol. 20,
    no. 10, pp. 406408, May 1984.
    [19] D. S. H. Chan and J. C. H. Phang, Analytical methods for the extraction of
    solar-cell single- and double-diode model parameters from i-v characteristics,
    IEEE Transactions on Electron Devices, vol. 34, no. 2, pp. 286293, Feb 1987.
    [20] F. J. Toledo, J. M. Blanes, and V. Galiano, Two-step linear least-squares
    method for photovoltaic single-diode model parameters extraction, IEEE
    Transactions on Industrial Electronics, vol. 65, no. 8, pp. 63016308, Aug 2018.
    [21] J. Cubas, S. Pindado, and A. Farrahi, New method for analytical photovoltaic
    parameter extraction, in 2013 International Conference on Renewable Energy
    Research and Applications (ICRERA), Oct 2013, pp. 873877.
    [22] R. Tai, B. Y. Chen, and F. X. Chen, Parameter extraction for single-diode
    model of solar cell, in 2016 International Conference on Industrial Informat-
    ics - Computing Technology, Intelligent Technology, Industrial Information In-
    tegration (ICIICII), Dec 2016, pp. 319322.
    [23] M. G. Villalva, J. R. Gazoli, and E. R. Filho, Comprehensive approach to
    modeling and simulation of photovoltaic arrays, IEEE Transactions on Power
    Electronics, vol. 24, no. 5, pp. 11981208, May 2009.
    [24] S. Yilmaz, H. R. Ozcalik, S. Kesler, F. Dincer, and B. Yelmen, The analysis
    of dierent pv power systems for the determination of optimal pv panels and
    system installation a case study in kahramanmaras, turkey, Renewable and
    Sustainable Energy Reviews, vol. 52, pp. 1015  1024, 2015.
    [25] S. Shongwe and M. Hanif, Comparative analysis of dierent single-diode pv
    modeling methods, IEEE Journal of Photovoltaics, vol. 5, no. 3, pp. 938946,
    May 2015.
    [26] S. A. Rahman, R. K. Varma, and T. Vanderheide, Generalised model of a
    photovoltaic panel, IET Renewable Power Generation, vol. 8, no. 3, pp. 217
    229, April 2014.
    [27] M. A. Kroon and R. A. C. M. M. van Swaaij, Spatial eects on ideality factor
    of amorphous silicon pin diodes, Journal of Applied Physics, vol. 90, no. 2, pp.
    9941000, 2001.
    [28] M. Worring and A. Smeulders, Digital curvature estimation, CVGIP: Image
    Understanding, vol. 58, no. 3, pp. 366  382, 1993.
    [29] R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, in
    MHS'95. Proceedings of the Sixth International Symposium on Micro Machine
    and Human Science, Oct 1995, pp. 3943.
    [30] I. Koohi and V. Z. Groza, Optimizing particle swarm optimization algorithm,
    in 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineer-
    ing (CCECE), May 2014, pp. 15.
    [31] R. A. Rutenbar, Simulated annealing algorithms: an overview, IEEE Circuits
    and Devices Magazine, vol. 5, no. 1, pp. 1926, Jan 1989.
    [32] D. F. Teshome, C. H. Lee, Y. W. Lin, and K. L. Lian, A modied rey
    algorithm for photovoltaic maximum power point tracking control under partial
    shading, IEEE Journal of Emerging and Selected Topics in Power Electronics,
    vol. 5, no. 2, pp. 661671, June 2017.
    [33] S. Baraskar, S. K. Jain, and P. K. Padhy, Fuzzy logic assisted p and o based
    improved mppt for photovoltaic systems, in 2016 International Conference on
    Emerging Trends in Electrical Electronics Sustainable Energy Systems (ICE-
    TEESES), March 2016, pp. 250255.
    [34] V. Fesharaki and H. Tavassoli, The eect of temperature on photovoltaic cell
    eciency, 11 2011.

    無法下載圖示 全文公開日期 2024/08/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE