簡易檢索 / 詳目顯示

研究生: Nafisha Herma Hanifha
Nafisha Herma Hanifha
論文名稱: 智動化揀貨系統倉庫中不同產品組合下存 貨單位之貨架指派策略
Product Mixture of SKU to Pod Assignment Policy in Robotic Mobile Fulfillment System Warehouse
指導教授: 周碩彥
Shuo-Yan Chou
口試委員: 周碩彥
Shuo-Yan Chou
郭伯勳
Po-Hsun Kuo
王孔政
Kung-jeng Wang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 53
中文關鍵詞: RMFSSKU to Pod Assignment PolicyPile-onABC ClassificationAssociation Rule
外文關鍵詞: RMFS, SKU to Pod Assignment Policy, Pile-on, ABC Classification, Association Rule
相關次數: 點閱:303下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

ABSTRACT
With the vast positive trend of e-commerce sales, the efficiency of warehouse
operations needs to keep pace. Therefore, a part-to-picker warehouse named Robotic
Mobile Fulfillment System Warehouse (RMFS) was explicitly designed e-commerce
warehouse. This warehouse system can reduce the number of human operators and use
robots, or in RMFS, called Automated Guided Vehicles (AGV), to carry the pods.
There are several ways to increase the efficiency of the warehouse. This research will
focus on the decision problem, SKU to the Pod, or product assignment policy.
This research has three scenarios: SKU to Pod using Random—baseline, Mixed
Class, and Mixed Class Affinity policy. ABC classification and association rule using
Weighted Support Count is applied to design the second and third scenarios. Then,
using a simulation approach, those three scenarios are compared to find the best policy
to increase warehouse efficiency. It is indicated by looking at each policy's number of
pods transported. The smaller the number of pods, the higher pile-on the SKU to pod
policy achieves.
As a result, the last scenario yields the best pile-on with an average number of
pods transported of 6.59 pods per order. Meanwhile, the first and second scenarios'
results are 7.06 and 6.90, respectively. From that numbers, it can be concluded that the
pile-on of the last scenario is 7% and 5% higher than the other two scenarios, even
though only 8% of SKUs form the association's rule. This result is verified by using
one-way ANOVA.
Keywords: RMFS, SKU to Pod Assignment Policy, Pile-On, ABC Classification,
Association Rule


ABSTRACT
With the vast positive trend of e-commerce sales, the efficiency of warehouse
operations needs to keep pace. Therefore, a part-to-picker warehouse named Robotic
Mobile Fulfillment System Warehouse (RMFS) was explicitly designed e-commerce
warehouse. This warehouse system can reduce the number of human operators and use
robots, or in RMFS, called Automated Guided Vehicles (AGV), to carry the pods.
There are several ways to increase the efficiency of the warehouse. This research will
focus on the decision problem, SKU to the Pod, or product assignment policy.
This research has three scenarios: SKU to Pod using Random—baseline, Mixed
Class, and Mixed Class Affinity policy. ABC classification and association rule using
Weighted Support Count is applied to design the second and third scenarios. Then,
using a simulation approach, those three scenarios are compared to find the best policy
to increase warehouse efficiency. It is indicated by looking at each policy's number of
pods transported. The smaller the number of pods, the higher pile-on the SKU to pod
policy achieves.
As a result, the last scenario yields the best pile-on with an average number of
pods transported of 6.59 pods per order. Meanwhile, the first and second scenarios'
results are 7.06 and 6.90, respectively. From that numbers, it can be concluded that the
pile-on of the last scenario is 7% and 5% higher than the other two scenarios, even
though only 8% of SKUs form the association's rule. This result is verified by using
one-way ANOVA.
Keywords: RMFS, SKU to Pod Assignment Policy, Pile-On, ABC Classification,
Association Rule

TABLE OF CONTENTS Recommendation Form ........................................................................................................... i Qualification Form .................................................................................................................. ii ABSTRACT .............................................................................................................................iii ACKNOWLEDGMENT ........................................................................................................ iv TABLE OF CONTENTS ....................................................................................................... v LIST OF FIGURES ............................................................................................................... vii LIST OF TABLES ................................................................................................................ viii CHAPTER 1 INTRODUCTION ........................................................................................... 1 1.1 Background and Motivation .................................................................................. 1 1.2 Objective .................................................................................................................. 3 1.3 Scope and Limitation .............................................................................................. 4 1.4 Organization of Thesis ............................................................................................ 4 CHAPTER 2 LITERATURE REVIEW ............................................................................... 6 2.1 Robotic Mobile Fulfillment System (RMFS) .............................................................. 6 2.2 SKU to Pod Assignment ............................................................................................... 7 2.3 ABC Classification ........................................................................................................ 8 2.4 Association Rule ............................................................................................................ 9 CHAPTER 3 METHODOLOGY ........................................................................................ 10 3.1 Data Gathering ............................................................................................................ 10 3.2 Inventory Analysis ...................................................................................................... 12 3.2.1 SKU Classification ............................................................................................... 12 3.2.2 Number of Slots Calculation ............................................................................... 13 3.3 SKU-to-Pod Assignment Scenarios .......................................................................... 13 3.3.1 Random Assignment Scenario ............................................................................ 13 3.3.2 Mixed-Class Assignment Scenario ..................................................................... 14 3.3.3 Mixed-Class-Affinity Assignment Scenario ....................................................... 14 vi 3.4 Simulation .................................................................................................................... 16 3.4.1 Simulation Layout ................................................................................................ 16 3.4.2 Simulation Parameter .......................................................................................... 17 3.4.3 Simulation Flowchart .......................................................................................... 19 3.5 Statistical Test ............................................................................................................. 23 3.5.1 Replication Adequacy Test ...................................................................................... 23 CHAPTER 4 RESULT AND DISCUSSION ..................................................................... 25 4.1 Data Gathering ............................................................................................................ 25 4.2 Inventory Analysis ...................................................................................................... 26 4.3 SKU to Pod Assignment Scenarios ............................................................................ 28 4.3.1 Random Assignment Scenario ................................................................................ 29 4.3.2 Mixed-Class Assignment Scenario ......................................................................... 29 4.3.3 Mixed-Class Affinity Assignment Scenario ........................................................... 31 4.4 Simulation .................................................................................................................... 31 4.4.1 Random Assignment Scenario Simulation Result ............................................. 32 4.4.2 Mixed Class Assignment Scenario Simulation Result ...................................... 32 4.4.3 Mixed Class Affinity Assignment Scenario Simulation Result ........................ 33 4.4.4 Simulation Result Analysis .................................................................................. 33 4.5 Statistical Test ............................................................................................................. 35 4.5.1 Replication Adequacy Test ...................................................................................... 35 4.5.2 ANOVA ..................................................................................................................... 35 CHAPTER 5 CONCLUSION ............................................................................................. 37 5.1 Conclusion ................................................................................................................... 37 5.2 Recommendation and Future Research .................................................................... 37 REFERENCES ...................................................................................................................... 39

REFERENCES
Ang, M., & Lim, Y. F. (2019). How to optimize storage classes in a unit-load
warehouse. European Journal of Operational Research, 278(1), 186-201.
https://doi.org/10.1016/j.ejor.2019.03.046
Azadeh, K., De Koster, R., & Roy, D. (2019). Robotized and Automated Warehouse
Systems: Review and Recent Developments. Transportation Science, 53(4),
917-945. https://doi.org/10.1287/trsc.2018.0873
Beuters, K., Cock, K. D., Hollevoet, J., Dobbelaere, G., & Landeghem, H. V. (2016).
A simulation model to compare autonomouse vehicle based warehouses with
traditional AS/RS systems. European Simulation Conference.
Bhatti, A., Akram, H., Basit, H. M., Khan, A. U., Naqvi, S. M. R., & Bilal, M. (2020).
E-commerce trends during COVID-19 Pandemic. International Journal of
Future Generation Communication and Networking, 1449-1452.
Chan, F. T. S., & Chan, H. K. (2011). Improving the productivity of order picking of a
manual-pick and multi-level rack distribution warehouse through the
implementation of class-based storage. Expert Systems with Applications,
38(3), 2686-2700. https://doi.org/10.1016/j.eswa.2010.08.058
Chevalier, S. (2021). Global retail e-commerce sales 2014-2024. Retrieved November
5, 2022, from https://www.statista.com/statistics/379046/worldwide-retail-ecommerce-
sales/
Enright, J. J., & Wurman, P. R. (2011). Optimization and coordinated autonomy in
mobile fulfillmen system. Proc. 25th AAAI Conf. Artif. Intell. (AAAI), 33-38.
Frazelle, E. (2016). World-Class Warehousing and Material Handling. 2nd McGraw-
Hill.
Frazelle, E. A., & Sharp, G. P. (1989). Correlated Assignment Strategy Can Improve
Any Order-Picking Operation. Industrial Engineering, 21(4), 33-37.
https://doi.org/10.1016/j.ifacol.2016.03.006
40
Galliussi, D. (2022). Robotic Mobile Fulfillment Systems: A simulative study with three
different managements Università di Padova]. Padova, Italy.
https://thesis.unipd.it/bitstream/20.500.12608/36639/1/Galliuss_Daniele.pdf
Gu, J. X., Goetschalckx, M., & McGinnis, L. F. (2007). Research on warehouse
operation: A comprehensive review. European Journal of Operational
Research, 177(1), 1-21. https://doi.org/10.1016/j.ejor.2006.02.025
Harrel, C., Ghosh, B., & Bowden, R. (2012). Simulation Using Promodel. McGraw
Hill.
Kim, H. J., Pais, C., & Shen, Z. J. M. (2020). Item Assignment Problem in a Robotic
Mobile Fulfillment System. IEEE Transactions on Automation Science and
Engineering, 17(4), 1854-1867. https://doi.org/10.1109/Tase.2020.2979897
Kim, K. H. (1993). A Joint Determination of Storage Locations and Space
Requirements for Correlated Items in a Miniload Automated Storage-Retrieval
System. International Journal of Production Research, 31(11), 2649-2659.
https://doi.org/10.1080/00207549308956888
Li, X. W., Hua, G. W., Huang, A. Q., Sheu, J. B., Cheng, T. C. E., & Huang, F. Q.
(2020). Storage assignment policy with awareness of energy consumption in
the Kiva mobile fulfilment system. Transportation Research Part E-Logistics
and Transportation Review, 144. https://doi.org/10.1016/j.tre.2020.102158
Merschformann, M., Lamballais, T., de Koster, M. B. M., & Suhl, L. (2019). Decision
rules for robotic mobile fulfillment systems. Operations Research Perspectives,
6. https://doi.org/10.1016/j.orp.2019.100128
Ming-Huang Chiang, D., Lin, C.-P., & Chen, M.-C. (2014). Data mining based storage
assignment heuristics for travel distance reduction. Expert Systems, 31(1), 81-
90. https://doi.org/10.1111/exsy.12006
Mirzaei, M., Zaerpour, N., & de Koster, R. (2021). The impact of integrated clusterbased
storage allocation on parts-to-picker warehouse performance.
Transportation Research Part E-Logistics and Transportation Review, 146.
https://doi.org/10.1016/j.tre.2020.102207
41
Mirzaei, M., Zaerpour, N., & de Koster, R. B. M. (2022). How to benefit from order
data: correlated dispersed storage assignment in robotic warehouses.
International Journal of Production Research, 60(2), 549-568.
https://doi.org/10.1080/00207543.2021.1971787
Muppani, V. R., & Adil, G. K. (2008). Class-based storage-location assignment to
minimise pick travel distance. International Journal of Logistics-Research and
Applications, 11(4), 247-265. https://doi.org/10.1080/13675560701690489
Murray, M. (2019). Order Picking in the Warehouse. Retrieved November 5, 2022,
from https://www.liveabout.com/order-picking-in-the-warehouse-
2221190#:~:text=Part%20to%20Picker,-
The%20part%2Dto&text=Products%20are%20moved%20from%20the,and%
20fulfills%20the%20customer%20orders.
Radasanu, A. C. (2016). Inventory Management, Service Level and Safety Stock.
Journal of Public Administration, Finance, and Law(9), 145-153.
Shafer, G. (1996). The Art of Causal Conjecture. The MIT Press.
Silva, A., Roodbergen, K. J., Coelho, L. C., & Darvish, M. (2022). Estimating optimal
ABC zone sizes in manual warehouses. International Journal of Production
Economics, 252. https://doi.org/10.1016/j.ijpe.2022.108579
Tessensohn, T. L., Roy, D., & De Koster, R. B. M. (2020). Inventory allocation in
robotic mobile fulfillment systems. Iise Transactions, 52(1), 1-17.
https://doi.org/10.1080/24725854.2018.1560517
Wurman, P. R., D'Andrea, R., & Mountz, M. (2008). Coordinating hundreds of
cooperative, autonomous vehicles in warehouses. Ai Magazine, 29(1), 9-19.
https://doi.org/10.1609/aimag.v29i1.2082
Yang, N. (2022). Evaluation of the Joint Impact of the Storage Assignment and Order
Batching in Mobile-Pod Warehouse Systems. Mathematical Problems in
Engineering, 2022, 9148001. https://doi.org/10.1155/2022/9148001
Yuan, R., Cezik, T., & Graves, S. C. (2018). Velocity-Based Storage Assignment in
Semi-Automated Storage Systems.

無法下載圖示 全文公開日期 2026/02/14 (校內網路)
全文公開日期 2026/02/14 (校外網路)
全文公開日期 2026/02/14 (國家圖書館:臺灣博碩士論文系統)
QR CODE