簡易檢索 / 詳目顯示

研究生: 蔡東穎
Dong-Ying Cai
論文名稱: 具循環電流抑制與電容電壓平衡之交錯式維也納整流器
Interleaved Vienna Rectifier with Circulating Current Suppression and Capacitor Voltage Balancing
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 林景源
張佑丞
林宜鋒
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 122
中文關鍵詞: 維也納整流器循環電流抑制電容電壓平衡交錯式控制
外文關鍵詞: Vienna Rectifier, Circulating Current Suppression, Capacitor Voltage Balancing, Interleaved Control
相關次數: 點閱:191下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在分析具循環電流抑制與電容電壓平衡之交錯式維也納整流器
    。為因應目前社會對於能源的需求不斷提高,電路多採取並聯方式以提高系統容量,然而實務上並聯系統會因為電路狀態相異等不理想因素導致循環電流產生。目前抑制循環電流的策略多採用硬體隔離與改善控制技術兩種方式,前者會使系統體積和成本增加,因此文獻大多針對後者進行研究
    ,本文亦如上所述,在不增加額外硬體的前提下,透過調變法與控制技術的改善以達到循環電流的抑制;為此,本文首先建立電路數學模型並探討循環電流的成因,接著分析空間向量脈波調變及循環電流抑制調變兩者對循環電流的影響。而維也納整流器是本文所採用之架構,其優點為低諧波失真與高功率因數,缺點是直流側由兩組電容串聯進而產生電壓不平衡的問題,此外雖然採用交錯式控制能提升三相電源之輸入電流品質,但也會加劇循環電流的影響。綜合以上所述,本文探討如何在交錯式控制的基礎上達到循環電流抑制以及電容電壓平衡,並透過電路模擬軟體PSIM建構兩組功率為5 kW之維也納整流器並確認可行性,實務上選用德州儀器之TMS320F28379D作為控制核心,最終驗證所提策略之有效性。


    The purpose of this thesis is to analyze an interleaved Vienna rectifier with circulating current suppression and capacitor voltage balancing. In response to the increasing demand for energy in society, circuits often adopt parallel configurations to enhance system capacity. However, in practical applications, the mismatched circuit conditions and other unfavorable factors can result in circulating currents. Currently, strategies to suppress circulating currents primarily employ hardware isolation and control improvement techniques. The former increases system size and cost, so the literature predominantly focuses on the latter. Similarly, this thesis aims to suppress circulating currents through modulation techniques and control improvements without the need for additional hardware. To achieve this, the thesis first establishes a mathematical model of the circuit and investigates the causes of circulating currents. It then analyzes the effects of space vector pulse width modulation and circulating current suppression modulation on circulating currents. The Vienna rectifier is the adopted architecture in this thesis, known for its low harmonic distortion and high power factor. However, it faces the issue of voltage imbalance on the DC side due to two sets of capacitors connected in series. Additionally, while interleaved control can enhance the current quality of the input power supply, it can also exacerbate the impact of circulating currents. Taking all the above into account, this thesis explores how to achieve circulating current suppression and capacitor voltage balancing based on interleaved control. It constructs two 5 kW Vienna rectifiers using the circuit simulation software PSIM to confirm feasibility. In practical implementation, the Texas Instruments TMS320F28379D is selected as the control core to ultimately realize the proposed strategy and verify its effectiveness.

    摘要 Abstract 誌謝 目錄 圖索引 表索引 第一章 緒論 1.1 研究動機與目的 1.2 論文內容及大綱 第二章 維也納整流器架構與數學模型 2.1 功率因數定義 2.2 三相整流器架構介紹 2.3 維也納整流器動作原理分析 2.4 維也納整流器之數學模型 2.4.1 座標軸轉換 2.4.2 靜止座標系數學模型 2.4.3 旋轉座標系數學模型 2.4.4 小信號模型 2.5 前饋解耦雙閉環控制 第三章 維也納整流器調變技術介紹 3.1 正弦脈波寬度調變 3.2 載波脈波寬度調變 3.2.1 三次諧波注入 3.2.2 均值零序注入 3.3 空間向量脈波寬度調變 3.3.1 空間向量平面與類型 3.3.2 空間向量區域判斷 3.3.3 空間向量合成原理 3.4 調變法等效分析 3.4.1 基於克拉克轉換之等效分析 3.4.2 基於k參數之等效分析 3.4.3 克拉克轉換等效與k參數等效比較 第四章 循環電流抑制與電容電壓平衡分析 4.1 循環電流成因分析 4.1.1 維也納整流器並聯之零軸模型 4.1.2 SVPWM與循環電流關係 4.2 循環電流抑制策略 4.2.1 零共模電壓調變法 4.2.2 循環電流抑制調變法 4.2.3 LMZPWM與CBPWM等效分析 4.3 電容電壓不平衡分析 4.4 電容電壓平衡控制 第五章 電路模擬與實驗結果 5.1 模擬驗證 5.1.1 未加入循環電流抑制與電容電壓平衡模擬 5.1.2 兼具循環電流抑制與電容電壓平衡模擬 5.2 實驗結果 5.2.1 實際電路 5.2.2 未加入循環電流抑制策略實驗結果 5.2.3 兼具循環電流抑制與電容電壓平衡之實驗結果 5.2.4 實驗數據 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考資料

    [1]經濟部能源局能源統計專區,2023年。檢自https://www.esist.org.tw/Database/Detail?I=0&CacheKey=21020511206M0
    [2]詳細電價表,臺灣電力股份有限公司,2023年https://www.taipower.com.tw/upload/238/2023050910452677448.pdf
    [3]功率因數宣導 , 臺 灣 電 力 股份有限公司 , 2014 年 , https://www.taipower.com.tw/upload/147/2017111320260157352.pdf
    [4]Chongming Qiao and K. M. Smedley, "Three-phase unity-power-factor star-connected switch (VIENNA) rectifier with unified constant-frequency integration control," in IEEE Transactions on Power Electronics, vol. 18, no. 4, pp. 952-957, July 2003, doi: 10.1109/TPEL.2003.813759.
    [5]Z. Zhao, W. Chen and L. Dai, "Design of Three-phase Vienna PFC Circuit With Integral Improved PI Controller," 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 2018, pp. 1-4, doi: 10.1109/PEAC.2018.8590648.
    [6]J. Hu, W. Xiao, B. Zhang, D. Qiu and C. N. M. Ho, "A Single Phase Hybrid Interleaved Parallel Boost PFC Converter," 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018, pp. 2855-2859, doi: 10.1109/ECCE.2018.8558409.
    [7]R. Chen, F. Wang, L. M. Tolbert, D. J. Costinett and B. B. Choi, "Current Jump Mechanism and Suppression in Paralleled Three-level Inverters with Space Vector Modulation," 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 2020, pp. 3074-3080, doi: 10.1109/APEC39645.2020.9124262.
    [8]Y. Li, X. Yang and W. Chen, "Circulating Current Analysis and Suppression for Configured Three-Limb Inductors in Paralleled Three-Level T-Type Converters With Space-Vector Modulation," in IEEE Transactions on Power Electronics, vol. 32, no. 5, pp. 3338-3354, May 2017, doi: 10.1109/TPEL.2016.2582687.
    [9]X. Xing, Z. Zhang, C. Zhang, J. He and A. Chen, "Space Vector Modulation for Circulating Current Suppression Using Deadbeat Control Strategy in Parallel Three-Level Neutral-Clamped Inverters," in IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 977-987, Feb. 2017, doi: 10.1109/TIE.2016.2618782.
    [10] X. Wang et al., "A Novel Model Predictive Control Strategy to Eliminate
    Zero-Sequence Circulating Current in Paralleled Three-Level Inverters," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 1, pp. 309-320, March 2019, doi: 10.1109/JESTPE.2018.2879645.
    [11]X. Liu, T. Liu, A. Chen, X. Xing and C. Zhang, "Suppression of Circulating Currents for Paralleled Three-Level T-Type Inverters Under Unbalanced Operating Conditions," 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 2020, pp. 3003-3007, doi: 10.1109/APEC39645.2020.9124161.
    [12]X. Li et al., "A Generalized Design Framework for Neutral Point Voltage Balance of Three-Phase Vienna Rectifiers," in IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 10221-10232, Oct. 2019, doi: 10.1109/TPEL.2018.2890715.
    [13]J. Zhou, J. O. Ojo, F. Tang, J. Haruna and P. C. Loh, "A Carrier-Based Discontinuous PWM for Single and Parallel Three-Level T-Type Converters With Neutral-Point Potential Balancing," in IEEE Transactions on Industry Applications, vol. 57, no. 5, pp. 5117-5127, Sept.-Oct. 2021, doi: 10.1109/TIA.2021.3093500.
    [14]Z. Zhao, "An Optimized Three-Phase Three-Level SVPWM Modulation Algorithm," 2016 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII), Wuhan, China, 2016, pp. 345-350, doi: 10.1109/ICIICII.2016.0089.
    [15]S. Srivastava and M. A. Chaudhari, "Comparison of SVPWM and SPWM Schemes for NPC Multilevel Inverter," 2020 IEEE International Students' Conference on Electrical,Electronics and Computer Science (SCEECS), Bhopal, India, 2020, pp. 1-6, doi: 10.1109/SCEECS48394.2020.131.
    [16]Jang-Hwan Kim and S. -K. Sul, "A carrier-based PWM method for three-phase four-leg voltage source converters," in IEEE Transactions on Power Electronics, vol. 19, no. 1, pp. 66-75, Jan. 2004, doi: 10.1109/TPEL.2003.820559.
    [17]Q. Yan, X. Zhang, T. Zhao, X. Yuan and R. Zhao, "An Analytical Simplified Three-Level SVPWM With Unified Zero-Sequence Component Injection," in IEEE Transactions on Power Delivery, vol. 37, no. 3, pp. 2417-2420, June 2022, doi: 10.1109/TPWRD.2022.3146776.
    [18]B. Wang, X. Zhang and R. Cao, "A Zero-Sequence Steerable CBPWM Strategy for Eliminating Zero-Sequence Current of Dual-Inverter Fed Open-End Winding Transformer Based PV Grid-Tied System With Common DC Bus," in IEEE Access, vol. 8, pp. 81220-81231, 2020, doi: 10.1109/ACCESS.2020.2991135.
    [19]Y. He, Y. Liu, C. Lei and J. Liu, "Equivalent Space Vector Output of Diode Clamped Multilevel Inverters Through Modulation Wave Decomposition Under Carrier-Based PWM Strategy," in IEEE Access, vol. 8, pp. 104918-104932, 2020, doi: 10.1109/ACCESS.2020.2999879.
    [20]R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang and D. Zhang, "Average Modeling and Control Design for VIENNA-Type Rectifiers Considering the DC-Link Voltage Balance," in IEEE Transactions on Power Electronics, vol. 24, no. 11, pp. 2509-2522, Nov. 2009, doi: 10.1109/TPEL.2009.2032262.
    [21]D. Grahame Holmes; Thomas A. Lipo, "Modulation of ThreePhase Voltage Source Inverters," in Pulse Width Modulation for Power Converters: Principles and Practice , IEEE, 2003, pp.215-258, doi: 10.1109/9780470546284.ch5.
    [22]M. C. Cavalcanti, A. M. Farias, K. C. Oliveira, F. A. S. Neves and J. L. Afonso, "Eliminating Leakage Currents in Neutral Point Clamped Inverters for Photovoltaic Systems," in IEEE Transactions on Industrial Electronics, vol. 59, no. 1, pp. 435-443, Jan. 2012, doi: 10.1109/TIE.2011.2138671.
    [23]Haoran Zhang, A. Von Jouanne, Shaoan Dai, A. K. Wallace and Fei Wang, "Multilevel inverter modulation schemes to eliminate common-mode voltages," in IEEE Transactions on Industry Applications, vol. 36, no. 6, pp. 1645-1653, Nov.-Dec. 2000, doi: 10.1109/28.887217.
    [24]J. -S. Lee and K. -B. Lee, "Modulation technique to reduce leakage current in transformerless photovoltaic systems using a three-level inverter," 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 2013, pp. 700-705.

    QR CODE