簡易檢索 / 詳目顯示

研究生: 游振郁
Zhen-Yu You
論文名稱: 基於系統識別之永磁同步馬達比例積分微分控制器設計
PID Controller Design of a PMSM Motor Based on System Identification
指導教授: 施慶隆
Ching-Long Shih
口試委員: 李文猶
Wen-Yo Lee
黃仲欽
Jonq-Chin Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 97
中文關鍵詞: 永磁同步馬達PID控制器位置控制速度控制FPGA系統識別
外文關鍵詞: System identification, FPGA, PMSM, PID controller, Speed control, Position control
相關次數: 點閱:493下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在應用系統識別及控制器設計方法,以實現永磁同步馬達之控制。首先經由馬達開迴路測試時的各項感測器計算得到識別資料,透過FPGA內之嵌入式微處理器Nios II與終端機介面存取資料數值於SDRAM中,之後於MATLAB上做資料分析與系統識別建立近似模型,再以Simulink模擬驗證後即可設計控制器達到閉迴路控制實驗,並將模擬與實驗結果對照,以證明此方法之可行性。本實驗開發於Altera DE0-Nano開發平台上,於馬達控制端使用Verilog硬體描述語言;資料存取端使用C語言來撰寫人機介面,並以多種迴路進行永磁同步馬達的電流、速度與位置控制實驗,並表列比較其控制結果。


    This thesis aims to apply the system identification and controller design to implement control of a permanent magnet synchronous motor (PMSM). First, identification data is obtained via sensors by performing open-loop tests of motor. These data is accessed to synchronous dynamic random-access memory (SDRAM) through terminal interface and Nios II of embedded microprocessor within the same FPGA chip. After that, the obtained data is analyzed to establish an approximate model based on the proposed system identification using MATLAB. As the approximate model is verified by Simulink, the corresponding controller is designed to achieve closed-loop control through experiment tests. Then, simulation and experimental results are compared to demonstrate feasibility of this system identification method. Finally, the experiment is conducted on Altera DE0-Nano development platform. The motor control end uses Verilog hardware description language, and data access uses C language to write Human Machine Interface. Multiple control loops are utilized to stabilize current, speed and position controls of a PMSM. The specifications are listed to compare and evaluate their control performance.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖表索引 VII 第一章 緒論 1 1.1 研究目的與動機 1 1.2 文獻回顧 1 1.3 論文大綱 2 第二章 系統識別與控制器設計 5 2.1 系統識別模型 5 2.2 系統識別方法 6 2.2.1 非線性死區識別 6 2.2.2 最小平方法 7 2.2.3 牛頓法 8 2.2.4 符合度 10 2.2.5 系統識別範例 10 2.3 系統識別工具庫 12 2.3.1 實驗數據匯入 12 2.3.2 資料前處理 13 2.3.3 估測模型 13 2.3.4 估測結果分析 14 2.4 數位控制器 14 2.4.1 控制器架構 15 2.4.2 控制器參數設計 16 2.5 控制器參數調節工具 17 第三章 系統架構與開迴路測試 18 3.1 硬體介紹 18 3.1.1 Altera DE0-Nano 開發平台 18 3.1.2 驅動電路 19 3.1.3 永磁同步馬達 20 3.2 開發環境 21 3.3 馬達驅動方式 23 3.4 開迴路測試 25 3.4.1 馬達開迴路架構 25 3.4.2 有限狀態機 25 3.4.3 脈波寬度調變 26 3.4.4 死區時間 26 3.4.5 電流量測電路 27 3.4.6 速度計算 28 3.4.7 位置計算 29 3.4.8 開迴路近似模型 30 第四章 電流與速度控制 37 4.1 電流控制 38 4.1.1 無載電流控制 38 4.1.2 半載電流控制 40 4.1.3 滿載電流控制 42 4.2 速度控制 44 4.2.1 無載速度控制 44 4.2.2 半載速度控制 46 4.2.3 滿載速度控制 48 4.3 速度-電流控制 50 4.3.1 無載速度-電流控制 50 4.3.2 半載速度-電流控制 52 4.3.3 滿載速度-電流控制 54 4.4 混合控制 56 4.4.1 無載混合控制 56 4.4.2 半載混合控制 58 4.4.3 滿載混合控制 60 4.5 控制比較與外力影響分析 62 第五章 位置控制 65 5.1 位置控制 66 5.1.1 無載位置控制 66 5.1.2 半載位置控制 68 5.1.3 滿載位置控制 70 5.2 位置-電流控制 72 5.2.1 無載位置-電流控制 72 5.2.2 半載位置-電流控制 74 5.2.3 滿載位置-電流控制 76 5.3 位置-速度控制 78 5.3.1 無載位置-速度控制 78 5.3.2 半載位置-速度控制 80 5.3.3 滿載位置-速度控制 82 5.4 位置-混合控制 84 5.4.1 無載位置-混合控制 84 5.4.2 半載位置-混合控制 86 5.4.3 滿載位置-混合控制 88 5.5 控制比較 90 第六章 結論與建議 93 6.1結論 93 6.2 建議 93 參考文獻 94

    [1] L. Ljung and T. Glad., “Modeling of Dynamic Systems”, Englewood Cliffs, N.J. : PTR Prentice Hall,1994.
    [2] Y. Li, K.H. Ang and G. Chong, “PID Control System Analysis and Design,” IEEE Contr. Syst. Mag., vol. 26, no. 1, pp. 32-41, Feb. 2006.
    [3] O. Al-Ayasrah, T. Alukaidey and G. Pissanidis, “DSP Based N-Motor Speed Control of Brushless DC Motors Using External
    FPGA Design”, in Proc. IEEE ICIT, vol.1, pp. 627–631, Dec. 2006.
    [4] Y. Shi and F. Ding, “Parameter Identification for Input Nonlinear Output-Error Systems Using the Unknown Variable Estimation”, in Proc. Amer. Control Conf., pp. 118-121, Jul. 2007.
    [5] D. Wang, K. Yu and H. Guo, “ Functional Design of FPGA in a Brushless DC Motor System Based on FPGA and DSP ” , IEEE VPPC, pp. 1-4,Sep. 2008.
    [6] U. Vinatha, S. Pola and K.P. Vittal, “Simulation of Four Quadrant Operation and Speed Control of BLDC Motor on MATLAB /SIMULINK”, in Proc. IEEE Region 10 Conference, pp. 1-6, Nov. 2008.
    [7] A. Sathyan, N. Milivojevic, Y.-J. Lee, M. Krishnamurthy and A. Emadi, “An FPGA-Based Novel Digital PWM Control Scheme for BLDC Motor Drives”, IEEE Trans. Ind. Electron., vol. 56, no. 8,pp.
    3040-3049,Aug. 2009.
    [8] R. Sanchis, J.A. Romero and P. Balaguer, “ A Simple Procedure to Design PID Controllers in the Frequency Domain ”, 35th Annual Conference of IEEE Industrial Electronics IECON '09. ,pp. 1420-1425,Nov. 2009.
    [9] C.-J. Zhang, X.-G. Wu and X.-Y. Zuo, “ FPGA Soft-Core Based Step Motor Driving ”,IEEE ICECE,pp. 1035-1038, Jun. 2010.
    [10] B. Alecsa and A. Onea, “ An FPGA Implementation of a Brushless DC Motor Speed Controller ”, IEEE 16th SIITME,pp. 99-102, Sep. 2010.
    [11] B. Alecsa and A. Onea, “ Design,Validation and FPGA Implementation of a Brushless DC Motor Speed Controller ”, 17th IEEE ICECS,pp. 1112-1115, Dec. 2010.
    [12] M.-F. Tsai, T. P. Quy, B.-F. Wu and C.-S. Tseng, “ Model Construction and Verification of a BLDC Motor Using MATLAB/SIMULINK and FPGA Control ”, IEEE 6th ICIEA,pp. 1797-1802, Jun. 2011.
    [13] N. Milivojevic, M. Krishnamurthy, Y. Gurkaynak, A. Sathyan, Y.-J. Lee and A. Emadi, “Stability Analysis of FPGA-Based Control of Brushless DC Motors and Generators Using Digital PWM Technique”, IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 343-351, Jan. 2012.
    [14] X. Lv and X. Ren, “Non-iterative Identification and Model Following Control of Hammerstein Systems with Asymmetric Dead-zone Nonlinearities”, IET Control Theory and Applications, Vol.6, No.1, pp. 84-89, Jan. 2012.
    [15] R. Arulmozhiyal and R. Kandiban, “Design of Fuzzy PID Controller for Brushless DC Motor”, in Proc. IEEE ICCCI, pp. 1-7, Jan. 2012.
    [16] R. Arulmozhiyal, “Design and Implementation of Fuzzy PID Controller for BLDC Motor Using FPGA”,IEEE International Conference on PEDES, pp. 1-6, Dec. 2012.
    [17] R. Abbasi-Asl, R. Khorsandi and B. Vosooghi-Vahdat , “ Hammerstein-Wiener Model: A New Approach to the Estimation of Formal Neural Information ”,BCN. 2012; 3 (4) :45-51.
    [18] K.Y. Song, Y.S. Jin, H.W. Kim, K.Y. Cho and B.M. Han, “Position Control of BLDC Motor with Modified Bipolar PWM for Clutch System of PHEV”, IEEE ECCE Asia, pp. 900-905, Jun. 2013.
    [19] M.M. Nikolic, N.U. Pjevalica and J.V. Kovacevic, “ FPGA Based Development Platform for Implementation of Brushless DC Motor Control ”, IEEE TELFOR,pp. 632-635, Nov. 2013.
    [20] A. Shyam and J.L.F. Daya, “A Comparative Study on the Speed Response of BLDC Motor Using Conventional PI Controller, Anti-windup PI Controller and Fuzzy Controller”, IEEE ICCC, pp. 68-73, Dec. 2013.
    [21] R. Shanmugasundram, K.M. Zakariah and N. Yadaiah, “ Implementation and Performance Analysis of Digital Controllers for Brushless DC Motor Drives ”, IEEE/ASME Transactions on Mechatronics,vol. 19, no. 1,pp. 213-224, Feb. 2014.
    [22] H.C. Hong and Z.Z. Mao, “An Identification Algorithm for Hammerstein-Wiener System with Dead Zone Input Nonlinearity Using Gradient Method”,IEEE 26th CCDC, pp. 2511-2514, May.-Jun. 2014.
    [23] M.A. Shamseldin and A.A. EL-Samahy, “ Speed Control of BLDC Motor by Using PID Control and Self-tuning Fuzzy PID Controller ”, 15th International Workshop on Research and Education in Mechatronics (REM), Elgouna, Egypt, pp. 1-9,Sep. 2014.
    [24] 趙清風,「使用MATLAB控制之系統識別」,全華科技圖書股份有限公司,2001。
    [25] 沈金鐘,「PID控制器:理論、調整與實現」,滄海書局,2001。
    [26] 江伯崧,「應用數位信號處理器於永磁同步馬達速度控制之研究」,國立成功大學工程科學研究所碩士論文,2002。
    [27] 李勝達,「電腦視覺與直流無刷馬達控制整合之桿上球系統研究」,國立台灣海洋大學電機工程學系碩士論文,2002。
    [28] 劉榮華,「永磁式線性同步電動機位置控制系統之研製」,國立台灣科技大學電機工程研究所碩士論文,2004。
    [29] 周立達,「永磁同步馬達速度控制器場效可規劃邏輯陣列硬體電路設計」,國立台灣科技大學電機工程研究所碩士論文,2008。
    [30] 陳信戎,「永磁式同步馬達速度控制之 FPGA 晶片研製」,國立交通大學電機與控制工程研究所碩士論文,2009。
    [31] 許智雄,「使用FPGA實現永磁同步馬達速度與電流控制器」,國立台灣科技大學電機工程研究所碩士論文,2012。
    [32] 葉威廷,「以DSP為基礎之無刷直流馬達速度控制」,南台科技大學電機工程研究所碩士論文,2013。

    無法下載圖示 全文公開日期 2020/07/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE