簡易檢索 / 詳目顯示

研究生: 李旻修
Min-siou Li
論文名稱: 影像視覺之低頻電液材料試驗機
A Vision Based Low-Frequency Electro-Hydraulic Material Testing Machine
指導教授: 王英才
Ying-tsai Wang
口試委員: 江茂雄
Mao-hsiung Chiang
莊福盛
Fu-sheng Chuang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 77
中文關鍵詞: 自組織滑動模糊控制電液材料試驗機影像視覺
外文關鍵詞: self-organizing sliding mode fuzzy controller, electro-hydraulic material testing machine, CCD Camera
相關次數: 點閱:265下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以影像視覺做為位移感測之迴授,由於取樣頻率較傳統接觸式感測器低與影像處理造成的時間延遲,使得高頻材料試驗中,控制性能較不理想。但在低頻試驗中,由於取樣頻率不足與擷取延遲之影響較小,所以本文以影像應用於低頻電液伺服材料試驗機上,再結合自組織滑動模糊控制器,進行1Hz以下之動態之軌跡追蹤控制,分析在不同波形輸入下,電液材料試驗機的控制性能,並探討非接觸式CCD Camera 取代傳統LVDT 的可行性。


    In the vision based control system, the lower frame per second and the delay of image processes are main reasons to degrade the control performance. These factors have no significant influence in the low frequency material testing. In experiments, vision based electro-hydraulic material testing machine is developed by self-organizing sliding mode fuzzy controller and to carry out dynamic tracking control under 1Hz. Square, sinusoidal and triangular waveforms are applied to analyze the control performance of this electro hydraulic testing machine, and then it will discuss the feasibility of non-contacted CCD camera to replace contacted sensors.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖片索引 VII 表格索引 IX 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 論文大綱 5 第二章 系統架構 6 2.1 系統架構 6 2.2 液壓系統 7 2.3 控制系統 9 2.4 系統工作流程 12 第三章 影像視覺處理與量測誤差分析 14 3.1影像處理流程 14 3.2 應用軟體介紹 15 3.2.1 Microsoft Visual C++.Net 15 3.2.2 Active Matrox Imaging Library(AMIL) 17 3.3 CCD Camera 影像校正 19 3.4 靜態量測誤差分析 22 3.5 動態量測誤差分析 22 第四章 控制理論 24 4.1自組織滑動模糊控制器 24 4.1.1定義變數 26 4.2滑動模式理論 27 4.2.1滑動模式 27 4.2.2迫近條件 28 4.2.3滑動條件 28 4.3模糊化 29 4.4模糊知識庫 31 4.5模糊推論 31 4.6解模糊化 32 4.7自組織學習機構 33 第五章 實驗結果與分析 38 5.1 實驗規劃 38 5.2 實驗參數設定 39 5.3 實驗結果與分析 41 5.3.1方波試驗 41 5.3.2正弦波試驗 48 5.3.3三角波試驗 53 第六章 結論 61 參考文獻 63 作者簡介 65

    [1] Marr D. and Poggio T.,“Cooperative computation of stereo disparity,” Science, Vol.194, No.4262, pp.283-287, 1976.
    [2] Barnard S.T. and Thompson W.B.,“Disparity analysis of image,”IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No.4, pp.333-340, 1980.
    [3] Corke P.I. and Hutchinson S.A.,“Real-time vision tracking and control,”IEEE International Conference on Robotics and Automation, Vol.1, pp.622-629, 2000.
    [4] Kanchanomai C., Yamamoto S., Miyashita Y., Mutoh Y.,and McEvily A .J.,“Low cycle fatigue test for solders using non-contact digital image measurement system,”International Journal of Fatigue, Vol.24, No.1, pp.57-67, 2002.
    [5] Wang C.L., Ding F., Cui J and Li Q.P.,“Dynamic characteristics of nozzle flapper servo valve based on GMA,”Chinese Journal of Mechanical Engineering, Vol.42, pp.23-26, 2006.
    [6] Clegg A.C., Dunnigan M.W. and Lane D.M.,“Self-tuning position and force control of an underwater hydraulic manipulator,”IEEE International Conference on Robotics and Automation, Vol.4, pp.3226-3231, 2001.
    [7] Yun J.S. and Cho H.S.,“Adaptive model following control ofelectrohydraulic velocity control systems subjected to unknown disturbances,”IEEE Proceedings on Control Theory and Application, Vol.135, pp.149-156, 1988.
    [8] Zadeh L.A.,“Electrical engineering at the crossroads,”IEEE Transactions on Education, Vol.8, pp.30-33, 1965.
    [9] Mo J.H. and Wang H.,“Modeling and fuzzy PID control of the VVVF based pressure control system of man-made diamond hydraulic force machine,”International Conference on Mechatronics and Automation, pp.3610-3615, 2007.
    [10] Zhang H., Ukrainetz P.R., Burton R.T. and Nikiforuk P.N., “Implementation of neural network approach in MIMO electrohydraulic servosystem control,”IEEE International Conference on Control,Vol.2, pp.1468-1473, 1996.
    [11] Mamdani E.H.,“Application of fuzzy algorithms for control of simple dynamic plant,”Proceedings of the Institution of Electrical Engineers, Vol.121, No.12, pp. 1585-1588, 1974.
    [12] Jang J.-S.R and Sun C.T.,“Neuro-fuzzy modeling and control,” Proceedings of the IEEE,Vol.83, Issue:3, pp. 378-406, 1995.
    [13] Wang Y.T. and Chang C.C.,“The fuzzy control of an electrohydraulic fatigue testing system,”International Journal of Materials and Product Technology, Vol.13, pp.3–6, 1998.
    [14] Huang S.J. and Huang K.S.,“An adaptive fuzzy sliding-mode controller for servomechanism disturbance rejection,”IEEE Transactions on Industrial Electronics, Vol.48, No.4, pp.845-852, 2001.
    [15] 陳映辰,“以影像為基礎之電液疲勞試驗機,”國立台灣科技大學碩士學位論文,2010.
    [16] “Matrox Image Library Version7.0 User Guide,”Matrox Electronic System, 2001.

    QR CODE