簡易檢索 / 詳目顯示

研究生: 陳柏諱
BO-HUI CHEN
論文名稱: 光譜可調之螢光轉換發光二極體光源
Emission Spectrum Tunable Phosphor-Converted Light Emitting Diode Light Sources
指導教授: 蘇忠傑
Jung-Chieh Su
口試委員: 葉秉慧
Pinghui Sophia Yeh
楊恆隆
none
林保宏
Pao-hung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 161
中文關鍵詞: 螢光粉田口式實驗法植物燈
外文關鍵詞: Phosphors, Taguchi method, Plant light
相關次數: 點閱:366下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

因為植物在不同的生長時期所需要的光譜不同,而植物工廠所用的光源是由不同數量的藍光與紅光LED所組成,所以植物生長燈是無法滿足植物所需要的光譜。本實驗利用多波長及多螢光粉的LED封裝結構來達到改變光譜特性的目的,以達到單顆LED就可以對植物不同生長時期提供相對應之光譜。本研究分為三個部分,第一部分螢光粉效率,計算各晶粒發光波長對不同螢光粉及其組合的能量轉換效率,並找出符合對植物所需光源的最佳效率之配方,而螢光粉能量轉換特徵分為波長轉換之量子效率及斯托克斯位移損耗,另外螢光粉之間的交互作用也需加入探討,以求得最佳效率組合,作為所需光源的螢光粉種類及晶粒波長之選擇參考基準。
第二部分為田口式實驗法,此方法作為各波長晶粒與螢光粉之最佳效率組合實驗的設計工具,第一次田口式目的為降低變異誤差(信號雜訊比),第二次田口式實驗目的為提高目標值平均,進而找出螢光粉最佳濃度配方。
第三部分為討論最佳螢光粉濃度配方的LED光質特性,其探討可分為三點結論,(一)紅色與藍色是植物行光合作用最有效的波長,依照不同的生長時期來調整不同的植物種類其需求紅光和藍光比例;(二)光譜相對強度的分佈可讓植物所具有的不同植化素吸收;(三)光譜半高寬的變化可讓植物吸收光譜有不同的吸收比例,造成對植物的生長狀態的影響,此外在照明應用方面,不同的發光光譜的半高寬變化對光譜的演色性會有提升效果。


Since plants needed different spectrum in different growth stages, the light sources of plant factory are composed of various number of blue or red LED, therefore the light source of plant factory is unable to satisfy the spec¬trum needed of the plant growth. In this study, the use of multi-wavelength excited multi-phosphor for LED packaging structure to achieve the pur¬pose of changing the emission spectral characteristics of a single LED, this re-search is proposed to provide the spectrum corresponding to different stages for plants growth.
To find the best recipe of light source required, this study is divided into three parts, the first part is phosphor effi¬ciency analysis, calculating energy conversion efficiencies at the emission wave¬length of each LED die of dif-ferent phosphors and their combinations.
The en¬ergy conversion characteristics of phosphor is divided into the wavelength conversion efficiency and Stokes shift loss, in addition, the inter-action between phos¬phors which can provide a criterior for the optimized combina¬tion of efficiency need.
The second part is the Taguchi method analysis, this method acts a de-sign tools for choice of the combination of LED exciting wavelength and phosphors, the first purpose of Taguchi is to reduce varia¬tion, the second purpose is improve to target average, also use of Taguchi method can be used to find the optimal formula¬tions of phosphors concentration.
The third part is to discuss LED light characteristic of the optimized phosphors concentration formulations, which can be divided into three con-clusions, 1.Red and blue are the most effective wavelengths for plant photo-synthesis, according to the different periods for plant growth and the different plants, therefore, the ratio between red and blue will be also different; 2.The spectrum distribution of the relative strength enables plants different phyto-chemical to absorb; 3. The full width at half maximum (FWHM) of the LED emission spectrum changes the plant absorption spectrum result in different absorption ratio for various growth state, in addition to the illumination ap-plication, the FWHM of the emission spectrum also improved color rendering characteristics.

摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 VIII 表目錄 X 表目錄 X 第一章 導論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 廠商植物燈 2 1.2.2 植物 4 1.2.3 色素 10 1.2.4 植物生長燈 17 1.2.5 螢光粉簡介 23 1.3 論文架構 35 第二章 研究目的與方法 37 2.1 研究目的 37 2.2 量測方法與儀器介紹 38 2.2.1 積分球與I-V電性量測 38 2.2.2 螢光光譜儀 40 2.2.3 晶粒與螢光粉之選擇 41 2.3 螢光粉材料成份與放射光譜 42 2.3.1 藍色螢光粉 43 2.3.2 綠色螢光粉 44 2.3.3 黃色螢光粉 45 2.3.4 紅色螢光粉 46 2.4 田口式實驗設計 48 2.4.1 田口式實驗法介紹 48 2.4.2 設計田口式實驗 48 2.4.3 計算因子效應 49 2.4.4 LED封裝製作 51 2.4.5 疊合率計算 54 第三章 螢光粉與晶粒分析 56 3.1 螢光粉激發放射光譜分析 56 3.2 螢光粉能量轉換率 60 3.3 螢光粉交互作用 67 3.4 螢光粉交互作用損失率 73 3.5 螢光粉交互作用放射強度的變化 74 3.6 挑選螢光粉及晶粒 79 第四章 田口式分析 80 4.1 田口式分析 80 4.1.1 第一次田口式實驗 80 4.1.2 第二次田口式實驗 90 第五章 光質分析 98 第六章 結論與建議 107 6.1 結論 107 6.2 未來發展方向 108 附錄A 112 附錄B 118 附錄D 139 附錄E 141 附錄F 142 附錄G 144

[1] 侯光良 and 刘允芬, "我国气候生产力及其分区," 资源科学, vol. 7, pp. 52-59, 1985.
[2] 闕壯群,微藻類固碳工程,科學發展,433期,pp.6-11,2009年1月
[3] 王健, et al., "纤维素发酵产酒精研究进展," 中国酿造, vol. 25, pp. 9-13, 2006.
[4] 郭和 and 朱丽华, "美国《 Science》 杂志评出 2011 年十大科学突破——介绍阻断艾滋病传播的突破性研究成果," 中国细胞生物学学报, vol. 34, pp. 195-196, 2012.
[5] 李晓慧 and 范同祥, "人工光合作用," 化学进展, vol. 23, pp. 1841-1853, 2011.
[6] X. Li and W. Lü, 20 shi ji Zhongguo xue shu da dian. Fuzhou: Fujian jiao yu chu ban she, 2004.
[7] P. B. Marsh and D. R. Goddard, "Respiration and fermentation in the carrot, Daucus carota. II. Fermentation and the Pasteur effect," American Journal of Botany, pp. 767-772, 1939.
[8] J. Fidler, "A comparison of the aerobic and anaerobic respiration of apples," Journal of Experimental Botany, pp. 41-64, 1951.
[9] 陳益明, "光合作用," 2003.
[10] 曾忠一, 大氣輻射: 聯經出版事業公司, 1988.
[11] 葉育材, 光合作用 : 植物生產力的生理基礎: 國立編譯館.
[12] 田雲生, "荷蘭研習心得分享-荷蘭永續節能溫室生產技術與應用," 專題討論專集, p. 13, 2013.
[13] L. Taiz, et al., Plant physiology and development: Sinauer Associates, Incorporated, 2015.
[14] A. W. Galston and R. K. Sawhney, "Polyamines in plant physiology," Plant physiology, vol. 94, pp. 406-410, 1990.
[15] 陳益明, "光合作用," 2003-10-02.
[16] 林安秋, 作物之光合作用: 臺灣商務印書館, 1996.
[17] http://www.wikiwand.com/zh-tw/%E5%85%89%E5%91%BC%E5%90%B8
[18] 梅镇安, et al., "光合作用," 北京大学出版社, 北京, p. 157, 1987.
[19] 吳映蓉, "營養學博士教你吃對植化素:可以防癌、抗老、調節免疫力," 臉譜, 2008/09/12.
[20] J. A. Davis, et al., "Long-lived coherence in carotenoids," New Journal of Physics, Aug 2010.
[21] 葉信平, "番茄裡的茄紅素," ed: 科學發展月刊, 2005.
[22] 邱輝龍 and 範明仁, "花青素與花色之表現," 中國園藝, vol. 44, pp. 102-115, 1998.
[23] 陈国, et al., "台湾落花生花青素相关产品开发之展望," 花生学报, vol. 39, pp. 8-10, 2010.
[24] R. E. Kendrick and G. H. Kronenberg, Photomorphogenesis in plants: Springer Science & Business Media, 2012.
[25] K. J. McCree, "Test of current definitions of photosynthetically active radiation against leaf photosynthesis data," Agricultural Meteorology, vol. 10, pp. 443-453, 1972/01/01 1972.
[26] J. Aitken-Christie, et al., Automation and environmental control in plant tissue culture: Springer Science & Business Media, 2013.
[27] J. E. Faust, et al., "The effect of daily light integral on bedding plant growth and flowering," HortScience, vol. 40, pp. 645-649, 2005.
[28] R. Bohning and C. A. Burnside, "The effect of light intensity on rate of apparent photosynthesis in leaves of sun and shade plants," American Journal of Botany, pp. 557-561, 1956.
[29] S. Rauf, "Quantum dot encoded magnetic beads for multiplexed fluorescence biosensing," University of Glasgow, 2010.
[30] K. N. Shinde, et al., "Basic mechanisms of photoluminescence," in Phosphate Phosphors for Solid-State Lighting, ed: Springer, 2012, pp. 41-59.
[31] A. H. Kitai, Solid state luminescence: Theory, materials and devices: Springer Science & Business Media, 2012.
[32] 黃云琪 and 陳登銘, "新穎稀土氟硫化物與氟硫氧化物螢光材料之製備, 發光特性鑑定與其應用," 2012.
[33] 張益新 et al.,"Dy3+離子Na+離子共摻BaY2ZnO5結構與性質分析",國立虎尾科技大學,2014.
[34] 劉偉仁, et al., LED 螢光粉技術: 台灣五南圖書出版股份有限公司, 2014.
[35] 陳仙瑋, "高演色性白光發光二極體封裝," 2007.
[36] J.-H. Jou, et al., "Plant Growth Absorption Spectrum Mimicking Light Sources," Materials, vol. 8, pp. 5265-5275, 2015.
[37] 丁偉庭, "水冷式可調光 LED 植物燈," 2014.

QR CODE