簡易檢索 / 詳目顯示

研究生: 石創輔
Chuang-Fu Shih
論文名稱: 製備配體功能化之纖維素納米纖維薄膜應用於銅離子感測之研究
Preparation of Copper Ion Sensing Ligand-functionalized Cellulose Nanofiber Film
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 蔡伸隆
Shen-Long Tsai
氏原真樹
Masaki Ujihara
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 72
中文關鍵詞: 纖維素奈米纖維四齒配體銅離子感測
外文關鍵詞: cellulose, nanofiber, tetradentate ligand, Cu ion sensing
相關次數: 點閱:301下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究開發一種基於2,2,6,6-四甲基-1-哌啶氧基(TEMPO)氧化纖維素納米纖維並與銅離子選擇性配體3,5-雙(((2-羥基萘-1-基)亞甲基)氨基)苯甲酸(3,5-BHNMABA)結合之螢光猝滅薄膜傳感器。配體經由縮合方法進行製備。而製備的納米複合薄膜傳感器由傅里葉變換紅外光譜(FTIR),紫外-可見光譜(UV-Vis),螢光光譜(FL),光學顯微鏡(OM)和多功能場效發射式掃描電子顯微鏡 (FE-SEM) 進行表徵。
於放射光譜中可得知螢光薄膜傳感器之螢光強度隨Cu2+濃度的增加而呈線性降低。另外,也進一步調查影響螢光薄膜傳感器的實驗參數並發現在310nm激發波長為薄膜傳感器的最佳條件。然後,結果得知檢測極限(LOD)和定量極限(LOQ)分別為18和60ppm。這種基於纖維素的螢光薄膜傳感器能非常簡便地檢測金屬離子。因此,這項研究工作提出了檢測環境中金屬離子的新途徑。


A Cu2+ selective fluorescence turn-off sensor film was developed based on 2,2,6,6-tetramethyl-1-piperidinyloxy radical-oxidized cellulose nanofiber and cooperated with cupper ion-selective ligand, which was called 3,5-bis(((2-hydroxynaphthalen-1-yl)methylene)amino)benzoic acid.
Ligand was prepared by the condensation method. The prepared sensor film was characterized by Fourier transform infrared absorption, ultraviolet–visible absorption, fluorescence spectrometers, optical microscope and multi-functional field-emission scanning electron microscope.
The fluorescence intensity of the film decreased linearly with the Cu2+ concentration. The experimental parameters affecting the fluorescence turn-off sensor were investigated and optimized at 310nm excitation wavelength. Then the limit of detection and the limit of quantification were 18 and 60 ppm Cu2+, respectively. This cellulose-based fluorescence sensing film is easy and convenient for detecting metal ions. Thus, this research work has proposed novel avenue for the detection of metal ions in the environment.

Abstract I 摘要 II Acknowledgements III TABLE OF CONTENTS IV List of Figures VI List of Tables IX Chapter 1: Introduction 1 1.1.1 Cellulose as Sustainable Material 2 1.1.2 Oxidized Cellulose (OC) 3 1.1.3 Method for Preparing Oxidized Cellulose (OC) 4 1.1.3(a) Preparation of Oxidized Cellulose by NO2 4 1.1.3(b) Preparation of Oxidized Cellulose by HNO3/H3PO4-NaNO2 System 4 1.1.3(c) Preparation of Oxidized Cellulose by TEMPO/NaBr/NaClO System 5 1.1.3(d) Preparation of Oxidized Cellulose by TEMPO/NaClO/NaClO2 System 7 1.1.4 Cellulose Nanofibers for Advanced Applications 8 1.1.5 Chelation and Its Applications 9 Objective of This Research 10 1.2.1 Introduction 10 1.2.2 Motivation 11 Chapter 2: Experimental Section 12 2.1 Materials 12 2.2 Synthesis Procedure 13 2.2.1 Synthesis of TEMPO-oxidized Cellulose (TOC) 13 2.2.2 Fabrication of TEMPO-oxidized Cellulose Nanofiber (TOCNF) 14 2.2.3 Synthesis of Tetradentate Ligand, 16 3,5-bis(((2-hydroxynaphthalen-1-yl )methylene)amino)benzoic acid (3,5-BHNMABA) 16 2.3 Preparation of Nanocomposite Film Sensor (TOCNF/ligand) 18 2.3.1 Synthesis of TOCNF/ligand Film Sensor 18 2.4 Fabrication of Nanocomposite Sensor Film (TOCNF/ligand) 21 2.5 Characterization Techniques 22 2.6 The Response of Cu2+ Measurement 22 2.7 Preparation of TOCNF Suspension to Measure Carboxyl Content 23 Chapter 3 Results and Discussion 24 3.1.1 Carboxyl Content in TEMPO-mediated Oxidized Cellulose Nanofiber (TOCNF) 24 3.1.2 Tetradentate Ligand (3,5-BHNMABA) conjugated on TOCNF 27 3.2 Characterization of TOCNF, 3,5-BHNMABA and their composite 28 3.2.1 Fourier Transform Infrared (FTIR) Absorption Spectroscopy 28 3.3 The characterization of ligand, ligand-EDA, TOCNF/ligand in solution and film 35 3.4 Morphological Homogeneity of Films 41 3.5 Selective detection of heavy metal on the TOCNF/L2 film 45 3.6 Sensing of Cu2+ on TOCNF/ligand1~ligand3 Sensor Films 46 3.7 Photostability of Films (TOCNF/ligand1~ligand3) 52 Chapter 4: CONCLUSION 53 Reference 55

1. Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A. &Danquah, M. K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018).
2. Ivanković, A. Review of 12 Principles of Green Chemistry in Practice. Int. J. Sustain. Green Energy 6, 39 (2017).
3. Isogai, A., Saito, T. &Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85 (2011).
4. Kamel, S. Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polym. Lett. 1, 546–575 (2007).
5. Jedvert, K. &Heinze, T. Cellulose modification and shaping - A review. J. Polym. Eng. 37, 845–860 (2017).
6. Khil, M. S. et al. Preparation of electrospun oxidized cellulose mats and theirin vitro degradation behavior. Macromol. Res. (2005). doi:10.1007/bf03219016
7. Son, W. K., Youk, J. H. &Park, W. H. Preparation of ultrafine oxidized cellulose mats via electrospinnning. Biomacromolecules (2004). doi:10.1021/bm034312g
8. Kumar, V. &Yang, T. HNO3/H3PO4-NANO2 mediated oxidation of cellulose - Preparation and characterization of bioabsorbable oxidized celluloses in high yields and with different levels of oxidation. Carbohydr. Polym. (2002). doi:10.1016/S0144-8617(01)00290-9
9. deNooy, A. E. J., Besemer, A. C. &vanBekkum, H. Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr. Res. (1995). doi:10.1016/0008-6215(94)00343-E
10. Isogai, A. &Kato, Y. Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose (1998). doi:10.1023/A:1009208603673
11. Bragd, P. L., Besemer, A. C. &VanBekkum, H. Bromide-free TEMPO-mediated oxidation of primary alcohol groups in starch and methyl α-D-glucopyranoside. Carbohydr. Res. (2000). doi:10.1016/S0008-6215(00)00109-9
12. Saito, T. &Isogai, A. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules (2004). doi:10.1021/bm0497769
13. Saito, T., Okita, Y., Nge, T. T., Sugiyama, J. &Isogai, A. TEMPO-mediated oxidation of native cellulose: Microscopic analysis of fibrous fractions in the oxidized products. Carbohydr. Polym. (2006). doi:10.1016/j.carbpol.2006.01.034
14. Saito, T., Kimura, S., Nishiyama, Y. &Isogai, A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules (2007). doi:10.1021/bm0703970
15. Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y. &Isogai, A. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules (2009). doi:10.1021/bm801065u
16. Hirota, M., Tamura, N., Saito, T. &Isogai, A. Oxidation of regenerated cellulose with NaClO2 catalyzed by TEMPO and NaClO under acid-neutral conditions. Carbohydr. Polym. (2009). doi:10.1016/j.carbpol.2009.04.012
17. Saito, T., Hirota, M., Tamura, N. &Isogai, A. Oxidation of bleached wood pulp by TEMPO/NaClO/NaClO2 system: Effect of the oxidation conditions on carboxylate content and degree of polymerization. J. Wood Sci. 56, 227–232 (2010).
18. Isogai, A. Review Development of completely dispersed cellulose nano fi bers. 94, 161–179 (2018).
19. Nowack, B. &VanBriesen, J. M. Chelating Agents in the Environment. 1–18 (2009). doi:10.1021/bk-2005-0910.ch001
20. Sillanpää, M. &Pirkanniemi, K. Recent developments in chelate degradation. Environ. Technol. (United Kingdom) (2001). doi:10.1080/095933322086180322
21. Jayakanthan, S., Braiterman, L. T., Hasan, N. M., Unger, V. M. &Lutsenko, S. Human copper transporter ATP7B (Wilson disease protein) forms stable dimers in vitro and in cells. J. Biol. Chem. (2017). doi:10.1074/jbc.M117.807263
22. Huster, D. et al. High copper selectively alters lipid metabolism and cell cycle machinery in the mouse model of Wilson disease. J. Biol. Chem. (2007). doi:10.1074/jbc.M607496200
23. Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L. &Markesbery, W. R. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. (1998). doi:10.1016/S0022-510X(98)00092-6
24. Yuan, D. S. et al. The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc. Natl. Acad. Sci. U. S. A. (1995).
25. Han, B. C. &Hung, T. C. Green oysters caused by copper pollution on the Taiwan coast. Environ. Pollut. (1990). doi:10.1016/0269-7491(90)90126-W
26. Adrees, M. et al. The effect of excess copper on growth and physiology of important food crops: a review. Environ. Sci. Pollut. Res. (2015). doi:10.1007/s11356-015-4496-5
27. Dong, S. et al. Isotopic signatures suggest important contributions from recycled gasoline, road dust and non-exhaust traffic sources for copper, zinc and lead in PM10 in London, United Kingdom. Atmos. Environ. (2017). doi:10.1016/j.atmosenv.2017.06.020
28. Zhang, L., Jin, X., Johnson, A. C. &Giesy, J. P. Hazard posed by metals and As in PM 2.5 in air of five megacities in the Beijing-Tianjin-Hebei region of China during APEC. Environ. Sci. Pollut. Res. (2016). doi:10.1007/s11356-016-6863-2
29. Prestel, H., Gahr, A. &Niessner, R. Detection of heavy metals in water by fluorescence spectroscopy: On the way to a suitable sensor system. Fresenius. J. Anal. Chem. (2000). doi:10.1007/s002160000379
30. Kulkarni, S., Dhokpande, S. &Kaware, J. A Review on Spectrophotometric Determination of Heavy Metals with emphasis on Cadmium and Nickel Determination by U.V. Spectrophotometry. Int. J. Adv. Eng. Res. Sci. 2, (2015).
31. M. Zeiner, b I. Reziæ, b and I. S. Determination of Heavy Metals in the Textile Industry. Kem.Ind. 56, 587–595 (2007).
32. Mao, J. et al. Determination of heavy metals in soil by inductively coupled plasma mass spectrometry (ICP-MS) with internal standard method. Electron. Sci. Technol. Appl. 4, 23–31 (2017).
33. Tareen, A. ., Sultan, I. . &Parakulsuksatid, P. Detection of heavy metals ( Pb , Sb , Al , As ) through atomic absorption spectroscopy from drinking water of District Pishin , Balochistan , Pakistan. Int. J. Curr. Microbiol. Aplied Sci. 3, 299–308 (2014).
34. Gumpu, M. B., Sethuraman, S., Krishnan, U. M. &Rayappan, J. B. B. A review on detection of heavy metal ions in water - An electrochemical approach. Sensors Actuators, B Chem. 213, 515–533 (2015).
35. Pepperkok, R. &Ellenberg, J. High-throughput fluorescence microscopy for systems biology. Nature Reviews Molecular Cell Biology (2006). doi:10.1038/nrm1979
36. Cui, C., Shu, W. &Li, P. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications. Front. Cell Dev. Biol. (2016). doi:10.3389/fcell.2016.00089
37. Fu, Q. et al. A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium. Biosens. Bioelectron. (2013). doi:10.1016/j.bios.2013.04.048
38. Terra, I. A. A., Mercante, L. A., Andre, R. S. &Correa, D. S. Fluorescent and colorimetric electrospun nanofibers for heavy-metal sensing. Biosensors (2017). doi:10.3390/bios7040061
39. Wang, G., Lu, Y., Lu, Y. &Yan, C. DNA-functionalization gold nanoparticles based fluorescence sensor for sensitive detection of Hg 2+ in aqueous solution. Sensors Actuators, B Chem. 211, 1–6 (2015).
40. Wang, H. H., Xue, L., Yu, C. L., Qian, Y. Y. &Jiang, H. Rhodamine-based fluorescent sensor for mercury in buffer solution and living cells. Dye. Pigment. 91, 350–355 (2011).
41. Ma, A. &Rosenzweig, Z. Submicrometric Lipobead-Based Fluorescence Sensors for Chloride Ion Measurements in Aqueous Solution. Anal. Chem. 76, 569–575 (2004).
42. Wang, W. et al. Simple naphthalimide-based fluorescent sensor for highly sensitive and selective detection of Cd2+and Cu2+in aqueous solution and living cells. Dalt. Trans. 42, 1827–1833 (2013).
43. Chen, W., Tu, X. &Guo, X. Fluorescent gold nanoparticles-based fluorescence sensor for Cu 2+ ions. Chem. Commun. 1736–1738 (2009). doi:10.1039/b820145e
44. Yin, M. &Ji, C. Nanoscaled Fluorescent Films and Layers for Detection of Environmental Pollutants. Nanoscaled Film. Layers (2017). doi:10.5772/67869
45. Liu, Y., Mills, R. C., Boncella, J. M. &Schanze, K. S. Fluorescent polyacetylene thin film sensor for nitroaromatics. Langmuir (2001). doi:10.1021/la010696p
46. Rharbi, Y., Yekta, A. &Winnik, M. A. A method for measuring oxygen diffusion and oxygen permeation in polymer films based on fluorescence quenching. Anal. Chem. (1999). doi:10.1021/ac990193c
47. Wu, M. J. et al. All Organic Label-like Copper(II) Ions Fluorescent Film Sensors with High Sensitivity and Stretchability. ACS Sensors 3, 99–105 (2018).
48. Ujihara, M., Hsu, M. H., Liou, J. Y. &Imae, T. Hybridization of cellulose nanofiber with amine-polymers and its ability on sick house syndrome gas decomposition. J. Taiwan Inst. Chem. Eng. 92, 106–111 (2018).
49. ReddyPrasad, P. &Imae, T. Selective detection of copper ion in water by tetradentate ligand sensor. J. Taiwan Inst. Chem. Eng. 72, 194–199 (2017).
50. Conde, J. et al. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front. Chem. 2, 48 (2014).
51. ThermoFisher. Edc Nhs. Unknown 0747, 1–4 (2009).
52. Johnson, R. K., Zink-Sharp, A. &Glasser, W. G. Preparation and characterization of hydrophobic derivatives of TEMPO-oxidized nanocelluloses. Cellulose 18, 1599–1609 (2011).
53. Tang, Z. et al. TEMPO-Oxidized cellulose with high degree of oxidation. Polymers (Basel). 9, 3–4 (2017).
54. Shinoda, R., Saito, T., Okita, Y. &Isogai, A. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13, 842–849 (2012).
55. Xu, C. et al. Isolation and properties of cellulose nanofibrils from coconut palm petioles by different mechanical process. PLoS One 10, 1–11 (2015).
56. Wu, B. et al. Preparation and characteristics of TEMPO-oxidized cellulose nanofibrils from bamboo pulp and their oxygen-barrier application in PLA films. Front. Chem. Sci. Eng. 11, 554–563 (2017).
57. Coseri, S. et al. Erratum: One-shot carboxylation of microcrystalline cellulose in the presence of nitroxyl radicals and sodium periodate (RSC Adv. (2015) 5 (85889-85897)). RSC Adv. 5, 96927 (2015).
58. Uribe, B. E. B., Chiromito, E. M. S., Carvalho, A. J. F., Arenal, R. &Tarpani, J. R. TEMPO-oxidized cellulose nanofibers as interfacial strengthener in continuous-fiber reinforced polymer composites. Mater. Des. 133, 340–348 (2017).
59. Karim, Z., Hakalahti, M., Tammelin, T. &Mathew, A. P. In situ TEMPO surface functionalization of nanocellulose membranes for enhanced adsorption of metal ions from aqueous medium. RSC Adv. 7, 5232–5241 (2017).
60. Lu, P., Liu, R., Liu, X. &Wu, M. Preparation of Self-supporting Bagasse Cellulose Nanofibrils Hydrogels Induced by Zinc Ions. Nanomaterials 8, 800 (2018).
61. Rzaczyńska, Z., Mrozek, R., Lenik, J., Sikorska, M. &Głowiak, T. The crystal structures and vibrational spectra of 3,4-diaminobenzoic and 3,5-diaminobenzoic acids. J. Chem. Crystallogr. 30, 519–524 (2000).
62. Beauchamp, P. (California S. P. U. Http://Www.Cpp.Edu/~Psbeauchamp/Pdf/Spec_Ir_Nmr_Spectra _Tables.Pdf. Spectrosc. Tables 2620, 1–15
63. Shrivastava, A. &Gupta, V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci. 2, 21 (2011).
64. Swartz, M. E. &Krull, I. S. Handbook of Analytical Validation. Handbook of Analytical Validation (2012). doi:10.1201/b12039
65. Stone, D. &Ellis, J. Calibration and Linear Regression Analysis: A Self-Guided Tutorial (Part 2). 1–7 (2001).
66. Kacmaz, S. et al. An ultra sensitive fluorescent nanosensor for detection of ionic copper. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 135, 551–559 (2015).
67. Zhao, S. et al. Portable solid rapid quantitative detection for Cu 2+ ions: Tuning the detection range limits of fluorescent conducting polymer dots. J. Mater. Res. 32, 1582–1593 (2017).
68. Tran, V. T., Tran, N. H. T., Nguyen, T. T., Yoon, W. J. &Ju, H. Liquid cladding mediated optical fiber sensors for copper ion detection. Micromachines 9, 1–9 (2018).
69. Lv, F. et al. Development of film sensors based on conjugated polymers for copper (II) ion detection. Adv. Funct. Mater. 21, 845–850 (2011).

無法下載圖示 全文公開日期 2024/07/29 (校內網路)
全文公開日期 2024/07/29 (校外網路)
全文公開日期 2024/07/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE