簡易檢索 / 詳目顯示

研究生: 江少華
Adhimoorthy - Prasannan
論文名稱: 環糊精/高分子複合材料之超分子結構的合成與特性
Synthesis and Characterization of Supramolecular Structures based on Cyclodextrin/Polymer Inclusion complex Systems
指導教授: 洪伯達
Po-Da Hong
口試委員: 葉明功
Ming-Kung Yeh
金榮東洋子
Toyoko Imae
朱義旭
Yi-Hsu Ju
許應舉
Ying-Gev Hsu
鄭國忠
Kuo-Chung Cheng
李選能
Sung-Nung Lee
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 112
中文關鍵詞:
外文關鍵詞: Inclusion complex, Polysebacicacid
相關次數: 點閱:243下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


In recent years attention has been expanded from supramolecular chemistry to supramolecular polymer chemistry, because of more sophisticated structural and functional achievement of supramolecular polymers. For example, in living system, various supramolecular polymers play important roles in maintaining life, such as double helix DNA, microtubules and microfilaments. This dissertation mainly focuses on the synthesis and structural investigation of supramolecular polymers inclusion complexation based on cyclodextrins. The discussion begins with detailed introduction and then in the second chapter, the supramolecular self assembled structures prepared from cyclodextrin based pseudo-polyrotaxanes and their assembled behavior investigation using various techniques like, transmission electron microscope (TEM), scanning electron microscope (SEM), synchrotron wide angle X-ray diffraction (WAXD), dynamic light scattering (DLS), cofocal laser scanning microscope (CLSM), polarized optical microscope (POM), UV-vis spectroscopy (UV-Vis) and Fourier-transform infrared (FTIR) were discussed. Macromolecular pseudo-polyrotaxanes were prepared through solution mixing method in which, the poly sebacic acid (PSA), polyaniline (PAni) were used as a guest matrix and α -cyclodextrin, β-cyclodextrin used as a host matrix.
The third chapter of the dissertation includes the design and supramolecular inclusion complexes (ICs) of α-Cyclodextrin (α-CD) and biodegradable polysebacic acid (PSA) that were prepared by using two different of pH values (pH 7 and pH 10). Interestingly, ICs prepared at pH 7 shows turbidity and then into white precipitate, while IC prepared at pH 10 forms into a clear solution, indicating the pH dependent behavior of the ICs and its formationof supramolecular assembly varies significantly by changing the pH. Moreover, we also found that by changing the pH, the affinity of the guest with the CD cavity differs from strong intermolecular hydrogen bonding to weak electrostatic interaction between PSA and α-CD. Besides, the crystallization of PSA is found to be suppressed by the addition of α-CD. The self-assembly of the obtained ICs are described by dynamic light scattering and transmission electron microscope and also ICs models are discussed describing the cyclodextrin pseudo-polyrotaxanes in order to find possible explanation for pH sensitivity.
The fourth chapter of the dissertation explains the design and synthesis of a cyclodextrin based “hairy urchin” shape PAni which was achieved from a simple microemulsion polymerization technique in the presence of β-cyclodextrin (β-CD). Ferric chloride (FeCl3) has played a role as a structural directing agent to fabricate the polymer as hairy urchin like structure/nano-rods via a cooperative interaction between FeCl3 and DoTAC in an aqueous medium. Host-guest inclusion complex of β-cyclodextrin with aniline was used as a monomer. It has been revealed that the formation of the supramolecular complexes of PAni with β-CD due to host-guest interaction is indispensable for the fabrication of these unique PAni nanostructures, and a suitable β-CD to aniline molar ratio is essential to their exclusive formation. Different varieties of PAni nanostructures, such as hairy urchin, branched particles consisting of rod-like branches, regular rod-like particles were obtained in the presence of FeCl3. Also, in the absence of FeCl3, predominant product of regular spherical particles and wire like aggregation exhibiting faceted surfaces were obtained.
The last chapter of the dissertation describes the synthesis of “Chrysanthemum-snowball” shaped PAni and its aligned supramolecular morphology obtained from simplepolymerization technique with self assembly method. It was found that, unique morphology of PAni with chrysanthemum-snowball like particles could be appropriately regulated by turning the concentration of monomer complex (β-CD/Ani complex) to oxidant. The amount of monomer complex has played a role as a structural regulating agent to fabricate the inclusion polymer as chrysanthemum-snowball structure/nanorods via an intermolecular interaction such as hydrogen bonding between β-CD, π-π interactions and cooperative interaction between PAni with FeCl3 in an aqueous medium. Different varieties of self-aligned PAni nanostructures, such as rod-like, flower-like assembled particles consisting of small length rod-like assemble regular chrysanthemum-snowball like particles were obtained. The morphological evolution of chrysanthemum-snowball like aggregation structures under different temperatures is examined. After observing their growth process, a tentative interpretation has been proposed to elucidate the formation of the PAni hierarchical structures.

Chapter 1 Introduction 1.1 Concept of supramolecular chemistry 1.2 Host - Guest chemistry 1.3 Cyclodextrins as supramolecular hosts 1.4 Cyclodextrins structure features and properties 1.5 Cyclodextrin based supramolecules 1.5.1 Electrostatic interaction 1.5.2 Metal coordination 1.5.3 Hydrogen bonding 1.5.4 π–π interactions 1.5.5 Supramolecular hydrogels driven by cyclodextrin inclusion complexes. 1.5.6 Adhesion of host gels to guest gels. 1. 6 General considerations of inclusion complex 1.6.1 Channel inclusion compounds 1.6.2 CD based pseudopolyrotaxanes 1. 6. 3 Main chain polyrotaxanes 1.7 Aim and outline of this thesis Chapter 2 Experimental section 2.1 Materials 2.2 Methods 2.2.1 Preparation of inclusion complexes (ICs) 2.2.2 Synthesis of water-soluble complexes (Inclusion type) 2.2.3 Synthetic procedure of PAni nanomaterials 2.2.4 Synthetic procedure of self-assembled PAni 2.3 Measurements Chapter 3 Structural formation of inclusion complex nano-particles from α–Cyclodextrin and Polysebacicacid solutions 3.1 Introduction 3.2 Results and Discussion 3.2.1 Formation and characterizations of inclusion complexes formed at pH7. 3.2.2 Effect of pH value on formation of inclusion complexes 3.2.3 Self–assembling behavior of α-CD-PSA complexes 3.3 Conclusion Chapter 4 Synthesis and characterization of ‘hairy urchin/ flower’ like polyaniline by using β-Cyclodextrin as a template 4.1 Introduction 4.2 Results and discussion 4.2.1 Formation of aniline/β-CD complex 4.2.2 Formation of rod-like micelle phase 4.2.3 Fabrication of PAni Nano-particles. 4.2.4 Electronic transport behavior 4.2.5 Influence of FeCl3 concentration on rod-like morphology 4.3 Conclusion Chapter 5 Facile synthesis of structural hierarchy in chrysanthemum-snowball like self-organized polyaniline 5.1 Introduction 5.2 Results and discussion 5.2.1 Morphological observation. 5.2.2 Mechanism of structural formation 5.2.3 Fabrication of PAni Nano-particles. 5.2.4 Electronic transport behaviors 5.3 Conclusion Chapter 6 Summary Chapter 7 Bibliography

1 Steed, J.; Atwood, J. L. Supramolecular Chemistry, John Wiley and Sons, Ltd, 2000.
2 Lehn, J.M. Struct. Bonding (Berlin) 1973, 16, 1.
3 Lehn, J.M. Pure Appl. Chem.1978, 50, 871.
4 Jonathan, D. R. T.; Steed, W.; Wallace, K. J. Core Concepts in Supramolecular Chemistry and Nanotechnology, John Wiley & Sons, Ltd, 2007.
5 Lehn, J. M. Angew. Chem., Int. Ed. Engl., 1988, 27, 89.
6 Brunsveld, L. Chem. Rev. 2001, 101, 4071.
7 Lehn, J.M. Supramolecular Chemistry: Concepts and Perspectives, Jon Wiley & Sons, Ltd, 1995.
8 Desiraju, G. R. Nature 2000, 408, 407.
9 Jonathan W. Steed, Jerry L. Atwood. Supramolecular chemistry John Wiley and Sons, 2009
10 Steed, W. W.; Turner, D. R.; Wallace, K. J. Core Concepts in Supramolecular Chemistry and Nanochemistry; John Wiley & Sons, Ltd, 2007.
11 Miyauchi, M.; Harada, A. J. Am. Chem. Soc. 2004, 126, 11418.
12 Kano, K.; Nishiyabu, R.; Asada, T.; Kuroda, Y. J. Am. Chem. Soc. 2002, 124, 9937.
13 Gopalsamuthiram, V.; Predeus, A. V.; Huang, R. H.; Wulff, W. D. J. Am. Chem. Soc. 2009, 131, 18018
14 Notestein, J. M.; Andrini, L. R.; Kalchenko, V. I.; Requejo, F. G.; Katz, A.; Iglesia, E. J. Am. Chem. Soc. 2007, 129, 1122.
15 Atwood, J. L.; Barbour, L. J.; Jerga, A. J. Am. Chem. Soc. 2002, 124, 2122.
16 Kirchhoff, P. D.; Dutasta, J. P.; Collet, A. McCammon, J. A. J. Am. Chem. Soc. 1997, 119, 8015.
17 Salorinne, K.; Nissinen, M. Org. Lett. 2006, 8, 5473.
18 Helena, M.; Marques, C Flavour Fragr. J. 2010, 25, 313
19 Chen, Y.;Liu, Y Chem. Soc. Rev., 2010, 39, 495
20 Fang, L.; Olson, M. A.; Benı‟tez,D.; Tkatchouk, E.; Goddard III, A.W.; Stoddart, S. F Chem. Soc. Rev., 2010, 39, 17.
21 French, D. Adv. Carbohydr. Chem. 1957, 12, 189.
22 Thomas, J. A.; Stewart, L. In Starch: Chemistry and Technology, R. L. Whistler and E. F. Paschall. (eds). Academic Press: New York, 1965, 209.
23 Davis, M. E.; Brewster, M. E.; Nat. Rev. Drug Discov. 2004, 3, 1023.
24 Cabral Marques, H. M. Rev. Port. Arm. 1994, XLIV, 77.
25 Rekharsky, M. V.; Inoue, Y. Chem. ReV. 1998, 98, 1875.
26 Liu, L.; Guo, Q. X. J. Inclusion Phenom. Macrocyclic Chem. 2002, 42, 1.
27 Harries, D.; Rau, D. C.; Parsegian, V. A. J. Am. Chem. Soc. 2005, 127, 2184.
28 Loftsson, T.; Brewster, M. E. J. Pharm. Sci. 1996, 85, 1017.
29 Szejtli, J. Pure Appl. Chem. 2004, 76, 1825.
30 Nepogodiev, S. A.; Stoddart, J. F. Chem. Rev. 1998, 98, 1959.
31 Harata, K. Chem. Rev. 1998, 98, 1803.
32 Rusa, C. C.; Rusa, M.; Peet, J.; Uyar, T.; Fox, J.; Hunt, M. A.; Wang, X.; Balik, C. M.; Tonelli, A. E. J. Incl. Phenom. Macrocycl. Chem. 2006, 55, 185.
33 The repeat distances in channel-type cyclodextrin crystal structures in Figure 1.10 come from a search of the Cambridge Crystallographic Database which gave the following hits: α-CD: 15 structures with a head-to-tail arrangement (8.2± 0.2) A; α-CD: 6 structures with a head-to-head arrangement (15.6±0.1) A; β-CD: 20 structures with a head-to-head arrangement (15.8±0.2) A; g-CD: 7 structures with a head-to-tail/head-to-head arrangement (23.1±0.1) A. Nonlinear zigzag channels were excluded from this analysis.
34 Baars, M.; Meijer, E.; Host–Guest Chemistry of Dendritic Molecules, Springer Berlin/Heidelberg, 2000, 131.
35 Faul, C. F. J.; Antonietti, M. Adv. Mater. 2003, 15, 673.
36 Wang, J.; Jiang, M. J. Am. Chem. Soc. 2006, 128, 3703.
37 McKeogh, I.; Hill, J. P.; Collins, E. S.; McCabe, T.; Powell, A. K.; Schmitt, W. New J. Chem. 2007, 31, 1882.
38 Judas, N.; Kaitner, B.; Acta Crystallogr., Sect. E: Struct. Rep. Online, 2006, 62, m163.
39 Liu, C. S.; Zhou, L. M.; Guo, L. Q.; Ma, S. T.; Fang, S. M. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2008, 64, m394.
40 Collins, S. N.; Krause, J. A.; Regis, M.; Ball, P. J.; Connick, W. B. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2007, 63, m528.
41 Burazerovic, S.; Gradinaru, J.; Pierron, J.; Ward Thomas R. Angew. Chem., Int. Ed. 2007, 46, 5510.
42 Ye, B. H.; Tong, M. L.; Chen, X. M.; Coord. Chem. Rev. 2005, 249, 545.
43 Dawsey, T. R.; McCormick, C. L.; Macromol, J. Sci., Rev. Macromol. Chem. Phys. 1990, C30, 405.
44 Hattori, M.; Shimaya, Y.; Saito, M.; Polym. J. 1998, 30, 37.
45 Fenniri, H.; Mathivanan, P.; Vidale, K.; Sherman, D.; Hallenga, K.; Wood, K.; Stowell, J.; Am. J. Chem. Soc. 2001, 123, 3854.
46 Conn, M. M.; Rebek, J. Chem. Rev. 1997, 97, 1647.
47 Scanlon, S.; Aggeli, A. Nano Today, 2008, 3, 22.
48 Grimme, S. Angew. Chem., Int. Ed. 2008, 47, 3430.
49 Moore, J. S. Acc. Chem. Res. 1997, 30, 402.
50 H€oger, S. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 2685.
51 Pasini, D.; Ricci, M. Curr. Org. Synth. 2007, 4, 59.
52 Zhao, D.; Moore, J. S. Chem. Commun. 2003, 807.
53 Ni, B. B.; Yan, Q.; Ma, Y.; Zhao, D. Coord. Chem. Rev. 2010, 254, 954.
54 Zang, L.; Che, Y.; Moore, J. S. Acc. Chem. Res. 2008, 41, 1596.
55 Li, L.; Guo, X.; Wang, J.; Liu, P.; Prud‟homme, R. K.; May, B. L.; Lincoln, S. F.Macromolecules 2008, 41, 8677.
56 Harada, A.; Kobayashi1,R.; Takashima,Y.;Hashidzume,A.; Yamaguchi,H Nature chemistry 2011, 3, 34.
57 Steed, J. W Nature chemistry 2011, 3, 9.
58 Liu, L.; Guo, Q.-X. J. Inclusion Phenom. Macrocyclic Chem. 2002, 42, 1.
59 Yasuda, S.; Miyake, K.; Sumaoka, J.; Komiyama, M.; Shigekawa, H. Jpn. J. Appl. Phys., Part 1 1999, 38, 3888.
60 Liu, L.; Song, K. S.; Li, X. S.; Guo, Q. X. J. Inclusion Phenom. Macrocyclic Chem. 2001, 40, 35.
61 Lichtenthaler, F. W.; Immel, S. Tetrahedron: Asymmetry 1994, 5, 2045.
62 Harada, A. Coord. Chem. ReV. 1996, 148, 115.
63 Liu, Y.; Zhao, Y. L.; Zhang, H. Y.; Song, H. B. Angew. Chem., Int.Ed. Engl. 2003, 42, 3260.
64 Ogata, N.; Sanui, K.; Wada, J. J. Polym. Sci., Polym. Lett. Ed. 1976, 14, 459.
65 Wenz, G.; Steinbrunn, M. B.; Landfester, K. Tetrahedron 1997, 53, 15575.
66 Steinbrunn, M. B.; Wenz, G. Angew. Chem., Int. Ed. Engl. 1996, 35, 2139.
67 Uyar, T.; Rusa, M.; Tonelli, A. E. Macromol. Rapid Commun. 2004,25, 1382.
68 Coleman, A. W.; Nicolis, I.; Keller, N.; Dalbiez, J. P. J. Inclusion Phenom. Mol. Recognit. Chem. 1992, 13, 139.
69 Gonza’lez-Gaitano, G.; Brown, W.; Tardajos, G. J. Phys. Chem. B 1997, 101, 710.
70 Gonza’lez-Gaitano, G.; Rodrı’guez, P.; Isasi, J. R.; Fuentes, M.; Tardajos, G.; Sa’nchez, M. J. Inclusion Phenom. Macrocyclic Chem. 2002, 44, 101.
71 Loftsson, T.; Ma’sson, M.; Brewster, M. E. J. Pharm. Sci. 2004, 93, 1091.
72 Choi, H. S.; Ooya, T.; Yui, N. Macromol. Biosci. 2006, 6, 420.
73 Rusa, C.; Tonelli, A. Macromolecules 2000, 33, 1813.
74 Rusa, C.; Tonelli, A. Macromolecules 2000, 33, 5321.
75 Tu, C. W.; Kuo, S.W.; Chang, F. C. Polymer 2009, 50, 2958.
76 Mathiowitz, E.; Amato, C.; Dor, Ph.; Langer, R. Polymer 1990, 31, 547.
77 Chiba, M.; Hanes, J.; Langer, R. Biomaterials 1997, 18, 893.
78 Langer R. New methods of drug delivery. Science 1990, 249, 1527.
79 Peppas, N. A.; Langer, R. New Challenges in Biomaterials. Science 1994, 263, 1715.
80 Leong, K. W.; Brott, B. C.; Langer, R. J Biomed Mater Res 1985, 19, 941.
81 Shin, K. M.; Dong, T.; He, Y.; Taguchi, Y.; Oishi, A.; Nishida, H.; Inoue, Y. Macromoleculer Biosci 2004, 4, 1075.
82 Shuai, X.; Porbeni, F. E.; Wei, M.; Bullions, T.; Tonelli, A. E. Macromolecules 2002, 35, 3126.
83 Shin, K.M.; Dong, T.; He, Y.; Inoue, Y. J Polym Sci Part B Polym Phys 2005, 43, 1433.
84 Wilson, L. D.; Siddall, S. R.; Verrall, R. E. Can. J. Chem. 1997, 75, 927.
85 He, Y.; Inoue, Y. Polym. Int. 2000, 49, 623.
86 Harada, A.; Nishiyama, T.; Kawaguchi, Y.; Okada, M.; Kamachi, M. Macromolecules 1997, 30, 7115.
87 Shuai, X.; Porbeni, F.; Wei, M.; Shin, I. D.; Tonelli, A. E. Macromolecules 2001, 34, 7355.
88 Huang, L.; Allen, E.; Tonelli, A. E. Polymer 1998, 39, 4857.
89 Huh, K. M.; Ooya, T.; Sasaki, S.; Yui, N. Macromolecules 2001, 34, 2402.
90 Harada, A.; Kawaguchi, Y.; Nishiyama, T.; Kamachi, M. Macromol. Rapid Commun. 1997, 18, 535.
91 Harada, A.; Okada, M.; Kamachi, M. Acta Polym. 1995, 46, 453.
92 Shin, K.M.; Dong, T.; He, Y.; Inoue, Y. J Polym Sci Part B: Polym Phys 2005, 43, 1433.
93 Patterson, A. L. Phys. Rev. 1939, 56, 978.
94 Wolf, B. A.; Willms, M. M. Makromol chem 1978, 179, 2265.
95 Schild, H. G.; Muthukumar, M.; Tirrell, D. A. Macromolecules 1991, 24, 948.
96 Sigert, A. J. F. Massachusetts Institute of Technology, Radiation Laboratory Report No. 465, 1943.
97 Pharr, D.Y.; Fu, Z.S.; Smith, T.K.; Hinze, W.L. Anal. Chem. 1989, 61, 275.
98 J. Cai, L.N . Zhang, C.Y. Chang, G.Z. Cheng, X.M. Chen, B.Chu, ChemPhysChem 2007, 8, 1572.
99 Dou, H. J.; Jiang, M.; Peng, H. S.; Chen, D. Y.; Hong, Y. Angew. Chem. Int. Ed. 2003, 42, 1516.
100 Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353.
101 Tang, C.; Bando, Y.; Golberg, D.; Ma, R. Angew. Chem., Int. Ed. 2005, 44, 576.
102 Shi, Y.; Zhou, B.; Wu, P.; Wang, K.; Cai, C. J. Electroanal. Chem. 2007, 611, 1.
103 Inguanta, R.; Piazza, S.; Sunseri, C. Electrochem. Commun. 2008, 10, 506.
104 Liu, Y.; Zhang, J.; Hou, W.; Zhu, J. J. Nanotechnology 2008, 19, 135707.
105 Zhang, L. Biosens. Bioelectron. 2008, 23, 1610.
106 Huang, J.; Virji, S.; Weiller, B. H.; Kaner, R. B. J. Am. Chem. Soc. 2003, 125, 314.
107 Marie, E.; Rothe, R.; Antonietti, M.; Landfester, K. Macromolecules 2003, 36, 3967.
108 Huang, K.; Wan, M. Chem. Mater. 2002, 14, 3486.
109 Hatchett, D. W.; Josowicz, M. Chem. Rev. 2008, 108, 746.
110 Haung, J.; Virji, S.; Kaner, R. B.; Weiller, B. H. Nano Lett. 2004, 4, 491.
111 Bhadra, S.; Khastgir, D.; Singha,N.K.; Lee, J.H. Progress in Polymer Science 2009, 34, 783.
112 Ding, H.; Wan, M.; Wei, Y. Adv. Mater. 2007, 19, 465.
113 Zhou, C.; Han, J.; Guo, R. J. Phys. Chem. B 2008, 112, 5014.
114 Del Valle, E.M. M. Process Biochemistry 2004, 4, 1033.
115 Storgberg, J.; Hartenstein, M.; Mueller, A. H. E.; Ritter, H. Macromol. Rapid Commun. 2000, 21, 1342.
116 Hu, X.; Lu, Y.; Liu, J. Macromol. Rapid Commun. 2004, 25, 1117.
117 Takashima, Y.; Oizumi, Y.; Sakamoto, K.; Miyauchi, M.; Kamitori, S.; Harada, A. Macromolecules 2004, 37, 3962.
118 Dong, S. J.; Zhanf, D. B.; Li, Z. Chin. Chem. Lett. 1992, 3, 129.
119 Frampton, M. J.; Anderson, H. L. Angew. Chem., Int. Ed. 2007, 46, 1028.
120 Carswell, A. D. W.; O‟Rear, E. A.; Grady, B. P. J. Am. Chem. Soc. 2003, 125, 14793.
121 Wang, J.; Wang, J.; Yang, Z.; Wang, Z.; Zhang, F. Wang, S. Reactive & functional polymers 2008, 68, 1435.
122 Hsieh, B.Z.; Chuang, H.Y.; Chao, L.; Li, Y.N.; Huang, Y. J.; Tseng, P.H.; Hsieh, T. H.; Ho, K. S. Polymer 2008, 49, 4218.
123 Hulvat, J. F.; Stupp, S. I. Angew. Chem., Int. Ed. 2003, 42, 778.
124 Schillen, K.; Brown, W.; Johnsen, R. M. Macromolecules 1994, 27, 4825.
125 Pecora, R. J. Chem. Phys. 1968, 48, 4126.
126 Lu, F. L.; Wudl, F.; Nowak, M.; Heeger, A. J. J. Am. Chem. Soc. 1986, 108, 8311.
127 Trchova, M.; Sedenkova, I.; Tobolkova, E.; Stejskal, J. Polym. Degrad. Stab. 2004, 86, 179.
128 Van den Boogaard, M. Ph.D. Thesis, University of Groningen, 2003.
129 Yang, C.; Chen, C. Synthetic Metals 2005, 153, 133.
130 Zhang, L.; Wan, M.; Wei, Y. Macro Rapid Commun. 2006, 27, 366.
131 Dufour, B.; Rannou, P.; Fedorko, P.; Djurado, D.; Travers, J. P.; Pron, A. Chem. Mater. 2001, 13, 4032.
132 Li,Y.; Wang, B.; Feng, W. Synthetic Metals 2009, 159, 1597.
133 Lee, H. T.; Chuang, K. R.; Chen, S. A.; Wei, P. K.; Hsu, J. H.; Fann, W. Macromolecules 1995, 28, 7645.
134 Calleja, R. D.; Matveeva, E. S.; Parkhutik, V. P. J. Non-Cryst. Solids 1995, 180, 260.
135 Afzal, A. B.; Akhtar, M. J.; Nadeem, M.; Ahmed, M.; Hassan, M. M.; Yasin, T.; Mehmood, M. J. Phys. D: Appl. Phys. 2009, 42, 015411.
136 Hunt, M. A.; Rusa, C. C.; Tonelli, A. E.; Balik, C. M. Carbohydr. Res. 2005, 340, 1631.
137 Becheri, A.; Lo Nostro, P.; Ninham, B. W.; Baglioni, P. J. Phys. Chem. B 2003, 107, 3979.
138 Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. J. Science 2000, 287, 622.
139 Wang, J.; Musameh, M.; Lin, Y. J. Am. Chem. Soc. 2003, 125, 2408.
140 Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013.
141 Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Science 2000, 289, 1757.
142 Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425.
143 Gudiksen, M. S.; Lauhon, L. J.; Wang, J.; Smith, D.; Lieber, C. M. Nature 2002, 415, 617.
144 Yoon, H.; Chang, M.; Jang, J. Ad. Funct. Mater. 2007, 17, 431.
145 Wei, Z.; Wan, M.; Lin, T.; Dai, L. Ad. Mater. 2003, 15, 136.
146 Sun, X. P.; Dong, S. J.; Wang, E. K. Chem. Commun. 2004, 1182.
147 Meng, L.; Lu, Y.; Wang, X.; Zhang, J.; Duan, Y.; Li, C. Macromolecules 2007, 40, 2981.
148 Ding, H.; Wan, M.; Wei, Y. Ad. Mater. 2007, 19, 465.
149 Peng, Z.; Guo, L.; Zhang, Z.; Tesche, B.; Wilke, T.; Ogermann, D.; Hu, S.; Kleinermanns, K. Langmuir 2006, 22, 10915.
150 Cao, Y.; Smith, P.; Heeger, A. J. Synth. Met. 1992, 48, 91.
151 Berdichevsky, Y.; Lo, Y. H. Ad. Mater. 2006, 18, 122.
152 Harada, A.; Kamachi, M. Nature 1993, 364, 516.
153 Szejtli, J. Chem. Rev. 1998, 98, 1743.
154 Gu, L.-Q.; Cheley, S.; Bayley, H. Science 2001, 291, 636.
155 Shukla, A. D.; Bajaj, H. C.; Das, A. Angew. Chem., Int. Ed. 2001, 40, 446.
156 Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Angew.Chem., Int. Ed. 2001, 40, 988.
157 Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew.Chem., Int. Ed. 2000, 39, 3348.
158 Murakami, H.; Kawabuchi, A.; Kotoo, K.; Kunitake, M.; Nakashima, N. J. Am. Chem. Soc. 1997, 119, 7605.
159 Banerjee, I. A.; Yu, L.; Matsui, H. J. Am. Chem. Soc. 2003, 125, 9542.
160 Nepal, D.; Samal, S.; Geckeler, K. E. Macromolecules 2003, 36, 3800.
161 Farcas, A.; Grigoras, M. J. Optoelectron. Adv. Mater. 2000, 2, 525.
162 Prasannan, A.; Bich Truong, T. L.; Hong, P. D.; Somanathan, N.; Shown, I.; Imae, T. Langmuir 2011, 27, 766.
163 Adams, P.N.; Monkman, A.P.; Apperley, D.C. Synth. Met. 1993, 55, 725.
164 Oka, O.; Morita, S.; Yoshino, K.; Jpn. J. Appl. Phys. 1990, 29, 679.
165 Angelopoulos, M.; Liao, Y.H.; Furman, B.; Graham, T. Proc. Int. Soc. Opt. Eng. 1995, 30, 2528.
166 Angelopoulos, M.; Liao, Y.H.; Furman, B.; Graham, T. Macromolecules 1996, 29, 3046.
167 Miyake, K.; Yasuda, S.; Harada, A.; Sumaoka, J.; Kimiyama, M.; Shigekawa, H. J. Am. Chem. Soc. 2003, 125, 5080.
168 Huang, J.; Kaner, R. B. Chem. Commun. 2006, 367.

QR CODE