簡易檢索 / 詳目顯示

研究生: 張哲豪
CHE-HAO CHANG
論文名稱: 平板式熱管性能之數值分析
Numerical Analysis of the Performance of a Flat Heat Pipe
指導教授: 莊福盛
Fu-Sheng Chuang
口試委員: 林顯群
Sheam-Chyun Lin
陳恩宗
En-Tsung Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 66
中文關鍵詞: 熱管毛細結構
外文關鍵詞: heat pipe, wick structure
相關次數: 點閱:284下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

熱管具有高熱傳量、構造簡單、反應迅速且不需額外提供動力等特性,是目前在各種電子產品及機械、工程系統熱管理中,極為重要之散熱元件之ㄧ。
本文是利用計算流體力學軟體FLUENT來進行模擬分析,以數值方法來分析平板式熱管於穩態時的溫度場及流場狀況,本研究模型以FLUENT做三維流場模擬,針對平板式熱管將其分成蒸氣區和固液區分別做模擬整合,並針對不同變數進行模擬探討。
由模擬結果的溫度場圖可知在靠近熱源的地方溫度梯度較大,在不同熱源輸入情況下,隨著熱通量增多而溫度場跟著變高;且溫度場大小也與毛細結構孔隙率呈正比;在冷卻區與絕緣區變動的情況下,相對的冷卻區域較大的散熱越佳。


Heat pipe has the properties of high heat transfer capacity, simple structure, quick response and no need of driving forces. It is often used in various kinds of electronic products and machinery and hot management of engineering system. It is an extremely important heat dissipation component nowadays.
This text utilized computational fluid dynamics software FLUENT to numerically analyze the temperature field and flow field of a flat plate heat pipe at steady state conditions. Three-dimensional flow field was simulated. The flat heat pipe was divided into vapor region and solid-liquid region. Analysis was done on these two regions separately for various parameters.
The results of temperature field patterns show that temperature gradient is large near the heat source. Increasing the heat flux, the temperature changes higher. Temperature is also found to be proportional to the porosity of the capillary structure. And bigger cooling zone has relatively larger thermal cooling capability.

第一章 緒論………………………………………………………… 1 1.1引言………………………………………………………… 1 1.2熱管的特性和操作界限…………………………………… 2 1.3文獻回顧…………………………………………………… 6 1.4研究目的…………………………………………………… 8 第二章 數學及物理模型…………………………………………… 11 2.1熱管的實際運作…………………………………………… 11 2.2基本假設和統御方程式…………………………………… 12 2.2.1 基本假設 …………………………………………… 12 2.2.2 統御方程式 ………………………………………… 13 2.3邊界條件…………………………………………………… 15 2.4多孔性介質的性質及經驗公式…………………………… 17 第三章 數值方法 …………………………………………………… 19 3.1前言 ………………………………………………………… 19 3.2計算流體力學的各種基本離散方法與比較 ……………… 20 3.3有限體積法(Finite Volume Method) …………………… 22 3.4差分方程式 ………………………………………………… 24 3.5流場數值解法 ……………………………………………… 26 3.6SIMPLE法 ………………………………………………… 27 3.6.1 SIMPLE算法流程圖 ……………………………… 30 第四章 模擬結果與討論…………………………………………… 32 4.1格點獨立測試……………………………………………… 33 4.2熱通量不同狀況分析……………………………………… 35 4.3毛細結構的孔隙率不同狀況分析………………………… 36 4.4不同冷卻區面積之狀況分析……………………………… 37 4.5二維與三維模擬流場之比較……………………………… 39 第五章 結論與建議………………………………………………… 62 5.1結論………………………………………………………… 62 5.2未來方向與建議…………………………………………… 63

[1] Gaugler, R.S., “Heat Transfer Device”,U.S. Patent 2350348,1944.
[2] Grover, G.M., “Evaporation-Condensation Heat Transfer Device”,U.S. Patent 3229759,1964
[3] Grover, G.M., Cotter, T.P. ,and Erickson, G.F., “Structure of Very High Thermal Conductance” Journal of Applied Physics, American Institute of Physics, Vol. 35, No.6, pp.1990-1991, New York,1964.
[4] Tien, C.L., and Sun, K.H., “Minimun Meniscus Radius of Heat Pipe Wicking Materials,” Int. J. Heat Mass Transfer, Vol.14, pp.1853-1855 , 1970.
[5] Tien, C.L., and Rohani, A.R., ”Analysis of The Effects of Vapor Pressure Drop on Heat Pipe Performance,” Int. J. Heat Mass Transfer, Vol.17, pp.61-67,1974.
[6] Babin, B. R., Peterson, G. P., and Wu, D., ‘‘Steady-State Modeling
and Testing of a Micro Heat Pipe,’’ Journal of Heat Transfer, Vol.
112, Aug., pp. 595– 601,1990.
[7] Pruzan, D. A., Klingensmith, L. K., Torrance, K. E., and Avedisian, C. T., “ Design of High-performance Sintered-wick Heat Pipes, ” Int. J. Heat Mass Transfer , Vol. 34, pp.1417-1429, 1991
[8] Xie ,H., Ali, A. and Bhatia ,R., “The Use of Heat Pipes in Personal Computers”, 1998 IEEE Inter Society Conference on Thermal Phenomena, pp.442-446, 1998.
[9] Zhu,N. and Vafai, K., “Vapor and Liquid Flow in an Asymmetrical Flat Plate Heat Pipe : A Three-Dimensional Analytical and Numerical Investigation,” Int. J. Heat Mass Transfer, Vol. 41, No.1, pp 159-174,1998.
[10] 陳瑤明“多層式燒結熱管之性能增強研究”2001,台灣大學機械
系.
[11] Vadakkan, Unnikrishnan, Garimella, Suresh V. and Murthy, Jayathi Y., “Transport in Flat Heat Pipes at High Heat Fluxes from Multiple Discrete Sources”, J. Heat Transfer, vol. 126, pp.347-354, June 2004.
[12] Koito Y., Imura H., Mochizuki M., Saito Y., and ToriS. i, “Numerical Analysis and Experimental Verification on Thermal Fluid Phenomena in a Vapor Chamber”, Applied Thermal Engineering, Vol.26, pp1699-1676,2006.
[13]Shoeib Mahjoub and Ali Mahtabroshan, “Numerical Simulation of a Conventional Heat Pipe” Int. World Academy of Science, Engineering and Technology 39. pp. 117-123, 2008.
[14]Nouri-Borujerdi A. and Layeghi M.“Numerical Analysis of
Vapour Flow in Concentric Annular Heat Pipes,” Transaction of
ASME: Journal of Heat Transfer, Vol. 126, pp. 442-448, 2004.

QR CODE